Towards the convergent therapeutic potential of G protein‐coupled receptors in autism spectrum disorders

Abstract Autism spectrum disorders (ASDs) are diagnosed in 1/100 children worldwide, based on two core symptoms: deficits in social interaction and communication, and stereotyped behaviours. G protein‐coupled receptors (GPCRs) are the largest family of cell‐surface receptors that transduce extracell...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of pharmacology Vol. 2023; pp. 1 - 24
Main Authors Annamneedi, Anil, Gora, Caroline, Dudas, Ana, Leray, Xavier, Bozon, Véronique, Crépieux, Pascale, Pellissier, Lucie P.
Format Journal Article
LanguageEnglish
Published Wiley 07.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Autism spectrum disorders (ASDs) are diagnosed in 1/100 children worldwide, based on two core symptoms: deficits in social interaction and communication, and stereotyped behaviours. G protein‐coupled receptors (GPCRs) are the largest family of cell‐surface receptors that transduce extracellular signals to convergent intracellular signalling and downstream cellular responses that are commonly dysregulated in ASD. Despite hundreds of GPCRs being expressed in the brain, only 23 are genetically associated with ASD according to the Simons Foundation Autism Research Initiative (SFARI) gene database: oxytocin OTR; vasopressin V 1A and V 1B ; metabotropic glutamate mGlu 5 and mGlu 7 ; GABA B2 ; dopamine D 1 , D 2 and D 3 ; serotoninergic 5‐HT 1B ; β 2 ‐adrenoceptor; cholinergic M 3 ; adenosine A 2A and A 3 ; angiotensin AT 2 ; cannabinoid CB 1 ; chemokine CX 3 CR1; orphan GPR37 and GPR85; and olfactory OR1C1, OR2M4, OR2T10 and OR52M1. Here, we review the therapeutic potential of these 23 GPCRs, as well as 5‐HT 2A and 5‐HT 7 , for ASD. For each GPCR, we discuss its genetic association, genetic and pharmacological manipulation in animal models, pharmacopoeia for core symptoms of ASD and rank them based on these factors. Among these GPCRs, we highlight D 2 , 5‐HT 2A , CB 1 , OTR and V 1A as the more promising targets for ASD. We discuss that the dysregulation of GPCRs and their signalling is a convergent pathological mechanism of ASD. Their therapeutic potential has only begun as multiple GPCRs could mitigate ASD.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0007-1188
1476-5381
DOI:10.1111/bph.16216