A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI

Magnetic resonance imaging (MRI) segmentation has been implemented by many clustering techniques, such as k-means, fuzzy c-means (FCM), learning-vector quantization (LVQ) and fuzzy algorithms for LVQ (FALVQ). Although these algorithms have been successful in applying MRI segmentation, obtaining the...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 34; no. 2; pp. 1285 - 1295
Main Authors Yeh, Jinn-Yi, Fu, J.C.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Magnetic resonance imaging (MRI) segmentation has been implemented by many clustering techniques, such as k-means, fuzzy c-means (FCM), learning-vector quantization (LVQ) and fuzzy algorithms for LVQ (FALVQ). Although these algorithms have been successful in applying MRI segmentation, obtaining the right number of clusters and adapting to different cluster characteristics are still not satisfactorily addressed. This report proposes an optimization technique, a hierarchical genetic algorithm with a fuzzy learning-vector quantization network (HGALVQ), to segment multi-spectral human-brain MRI. Evaluation of this approach is based on a real case with human-brain MRI of an individual suffering from meningioma. The HGALVQ is verified by the comparison with other popular clustering algorithms such as k-means, FCM, FALVQ, LVQ, and simulated annealing. Experimental results show that HGALVQ not only returns an appropriate number of clusters and also outperforms other methods in specificity.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2006.12.012