A calmodulin-stimulated Ca2+ pump in plasma-membrane vesicles from Trypanosoma brucei ; selective inhibition by pentamidine
Despite previous reports [McLaughlin (1985) Mol. Biochem. Parasitol. 15, 189-201; Ghosh, Ray, Sarkar and Bhaduri (1990) J. Biol. Chem. 265, 11345-11351; Mazumder, Mukherjee, Ghosh, Ray and Bhaduri (1992) J. Biol. Chem. 267, 18440-18446] that the plasma membrane of different trypanosomatids only cont...
Saved in:
Published in | Biochemical journal Vol. 296; no. 3; pp. 759 - 763 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Colchester
Portland Press
15.12.1993
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Despite previous reports [McLaughlin (1985) Mol. Biochem. Parasitol. 15, 189-201; Ghosh, Ray, Sarkar and Bhaduri (1990) J. Biol. Chem. 265, 11345-11351; Mazumder, Mukherjee, Ghosh, Ray and Bhaduri (1992) J. Biol. Chem. 267, 18440-18446] that the plasma membrane of different trypanosomatids only contains Ca(2+)-ATPase that does not show any demonstrable dependence on Mg2+, a high-affinity (Ca(2+)-Mg2+)-ATPase was demonstrated in the plasma membrane of Trypanosoma brucei. The enzyme became saturated with micromolar amounts of Ca2+, reaching a Vmax. of 3.45 +/- 0.66 nmol of ATP/min per mg of protein. The Km,app. for Ca2+ was 0.52 +/- 0.03 microM. This was decreased to 0.23 +/- 0.05 microM, and the Vmax. was increased to 6.36 +/- 0.22 nmol of ATP/min per mg of protein (about 85%), when calmodulin was present. T. brucei plasma-membrane vesicles accumulated Ca2+ on addition of ATP only when Mg2+ was present, and released it to addition of the Ca2+ ionophore A23187. In addition, this Ca2+ transport was stimulated by calmodulin. Addition of NaCl to Ca(2+)-loaded T. brucei plasma-membrane vesicles did not result in Ca2+ release, thus suggesting the absence of a Na+/Ca2+ exchanger in these parasites. Therefore the (Ca(2+)-Mg2+)-ATPase would be the only mechanism so far described that is responsible for the long-term fine tuning of the intracellular Ca2+ concentration of these parasites. The trypanocidal drug pentamidine inhibited the T. brucei plasma-membrane (Ca(2+)-Mg2+)-ATPase and Ca2+ transport at concentrations that had no effect on the Ca(2+)-ATPase activity of human or pig erythrocytes. In this latter case, pentamidine behaved as a weak calmodulin antagonist, since it inhibited the stimulation of the erythrocyte Ca(2+)-ATPase by calmodulin. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj2960759 |