Physiological acetic acid concentrations from ethanol metabolism stimulate accumbens shell medium spiny neurons via NMDAR activation in a sex-dependent manner

Recent studies have implicated the ethanol metabolite, acetic acid, as neuroactive, perhaps even more so than ethanol itself. In this study, we investigated sex-specific metabolism of ethanol (1, 2, and 4 g/kg) to acetic acid in vivo to guide electrophysiology experiments in the accumbens shell (NAc...

Full description

Saved in:
Bibliographic Details
Published inNeuropsychopharmacology (New York, N.Y.) Vol. 49; no. 5; pp. 885 - 892
Main Authors Chapp, Andrew D, Nwakama, Chinonso A, Collins, Andréa R, Mermelstein, Paul G, Thomas, Mark J
Format Journal Article
LanguageEnglish
Published England Nature Publishing Group 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent studies have implicated the ethanol metabolite, acetic acid, as neuroactive, perhaps even more so than ethanol itself. In this study, we investigated sex-specific metabolism of ethanol (1, 2, and 4 g/kg) to acetic acid in vivo to guide electrophysiology experiments in the accumbens shell (NAcSh), a key node in the mammalian reward circuit. There was a sex-dependent difference in serum acetate production, quantified via ion chromatography only at the lowest dose of ethanol (males > females). Ex vivo electrophysiology recordings of NAcSh medium spiny neurons (MSN) in brain slices demonstrated that physiological concentrations of acetic acid (2 mM and 4 mM) increased NAcSh MSN excitability in both sexes. N-methyl-D-aspartate receptor (NMDAR) antagonists, AP5 and memantine, robustly attenuated the acetic acid-induced increase in excitability. Acetic acid-induced NMDAR-dependent inward currents were greater in females compared to males and were not estrous cycle dependent. These findings suggest a novel NMDAR-dependent mechanism by which the ethanol metabolite, acetic acid, may influence neurophysiological effects in a key reward circuit in the brain from ethanol consumption. Furthermore, these findings also highlight a specific sex-dependent sensitivity in females to acetic acid-NMDAR interactions. This may underlie their more rapid advancement to alcohol use disorder and increased risk of alcohol related neurodegeneration compared to males.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-133X
1740-634X
DOI:10.1038/s41386-023-01752-8