Application of VBGMM for pitch type classification: analysis of TrackMan's pitch tracking data

In the game of baseball, each pitcher throws various types of pitches, such as cutter, curve ball, slider, and splitter. Although the type of a given pitch may be inferred by audience and/or obtained from the TrackMan data, the actual pitch type (i.e., the pitch type declared by the pitcher) may not...

Full description

Saved in:
Bibliographic Details
Published inJapanese journal of statistics and data science Vol. 4; no. 1; pp. 41 - 71
Main Authors Umemura, Kazuhiro, Yanai, Toshimasa, Nagata, Yasushi
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the game of baseball, each pitcher throws various types of pitches, such as cutter, curve ball, slider, and splitter. Although the type of a given pitch may be inferred by audience and/or obtained from the TrackMan data, the actual pitch type (i.e., the pitch type declared by the pitcher) may not be known. Classification of pitch types is a challenging task, as pitched baseballs may have different kinematic characteristics across pitchers even if the self-declared pitch types are the same. In addition, there is a possibility that the kinematic characteristics of pitched baseballs are identical even if the self-declared pitch types are different. In this study, we aimed to classify TrackMan data of pitched baseballs into pitch types by applying the Variational Bayesian Gaussian Mixture Models technique. We also aimed to analyze the kinematic characteristics of the classified pitch types and indices related to batting performance while pitching each pitch type. The results showed that the pitch types could not be accurately classified solely by kinematic characteristics, but with consideration of the characteristics of the fastball the accuracy improves substantially. This study could provide a basis for the development of a more accurate automatic pitch type classification system.
ISSN:2520-8756
2520-8764
DOI:10.1007/s42081-020-00079-8