Enzymatic transformation of biologically active 1,3;1,6-beta-D-glucan. Structure and activity of resulting fragments
The fragmentation of the biologically active 1,3;1,6-beta-D-glucan Antivir by endo-1,3-beta-D-glucanase LIV from crystalline styles of the marine mollusk Spisula sachalinensis was carried out. It was found that low molecular mass oligomers possessing a stabilizing effect on membranes and anti-viral...
Saved in:
Published in | Biochemistry (Moscow) Vol. 72; no. 1; pp. 29 - 36 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The fragmentation of the biologically active 1,3;1,6-beta-D-glucan Antivir by endo-1,3-beta-D-glucanase LIV from crystalline styles of the marine mollusk Spisula sachalinensis was carried out. It was found that low molecular mass oligomers possessing a stabilizing effect on membranes and anti-viral activity against tobacco mosaic virus appeared in the process of enzymatic hydrolysis of Antivir. Biological activity of 1,3;1,6-beta-D-glucooligo- and polysaccharides was found to be associated with molecular mass (polymerization degree (n) not less than 14) and with presence of intralinked beta-1,6-connected monosaccharide residues. Probably, decrease in molecular mass is compensated by increase in number of intralinked beta-1,6-connected monosaccharide residues. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0006-2979 1608-3040 0320-9725 |
DOI: | 10.1134/S0006297907010038 |