Cardiovascular and gill microcirculatory effects of endothelin-1 in atlantic cod: evidence for pillar cell contraction

Endothelin-1 (ET-1) has been shown to cause a considerable increase in the vascular resistance of fish gills. In trout, recent evidence suggest that this is the result of pillar cell contraction in the gill lamellae. Using epi-illumination microscopy to observe the gill lamellae of anaesthetised Atl...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental biology Vol. 202 (Pt 9); no. 9; pp. 1151 - 1157
Main Authors Stenslokken, KO, Sundin, L, Nilsson, GE
Format Journal Article
LanguageEnglish
Published England 01.05.1999
Online AccessGet full text

Cover

Loading…
More Information
Summary:Endothelin-1 (ET-1) has been shown to cause a considerable increase in the vascular resistance of fish gills. In trout, recent evidence suggest that this is the result of pillar cell contraction in the gill lamellae. Using epi-illumination microscopy to observe the gill lamellae of anaesthetised Atlantic cod (Gadus morhua), we show that ET-1 (100 ng kg-1, injected into the ventral aorta) causes an increase in pillar cell diameter, consistent with pillar cell contraction, and a shift of intralamellar blood flow from the lamellar sheet to the outer marginal channels. Simultaneously, there was an increase in ventral aortic blood pressure, a reduction in cardiac output, an increase in gill vascular resistance and a reduction in the oxygen partial pressure of venous blood. All these effects were blocked by the ETA/ETB receptor antagonist bosentan (5 mg kg-1). Pillar cell contraction is likely to be a mechanism for matching the functional respiratory surface area with the instantaneous respiratory needs of the fish.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.202.9.1151