Hydrogen absorption in 1 nm Pd clusters confined in MIL-101(Cr)
We report here the unprecedented modification of the hydrogen absorption/desorption properties of 1 nm Pd clusters relative to the bulk and nanoparticles down to 2–3 nm. These metal clusters have been synthesized by a facile double solvent impregnation method. They contain on average 33 atoms and ar...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 5; no. 44; pp. 23043 - 23052 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We report here the unprecedented modification of the hydrogen absorption/desorption properties of 1 nm Pd clusters relative to the bulk and nanoparticles down to 2–3 nm. These metal clusters have been synthesized by a facile double solvent impregnation method. They contain on average 33 atoms and are confined/stabilized into a metal-organic-framework with different metal loadings (5–20 wt%). This is the first time, to the best of our knowledge, that 1 nm Pd clusters are effectively confined into a MOF for high metal loadings. Such ultra-small nanoparticles are crystalline with the archetypical fcc structure of the bulk metal, as confirmed by both HR-TEM and in situ EXAFS. Hydrogen absorption/desorption properties of 1 nm Pd clusters have been characterized by both laboratory and synchrotron facilities. Under ambient conditions, 1 nm Pd clusters absorb hydrogen forming solid solutions instead of a hydride phase, as usually encountered for the bulk and Pd nanoparticles down to 2–3 nm. This can be understood by a decrease of the critical temperature of the two-phase region in the Pd–H phase diagram below room temperature. Moreover, the activation energy of hydrogen desorption from Pd clusters strongly decreases relative to bulk Pd. This suggests a change in the rate limiting step from surface recombination or β → α phase transformation usually encountered in bulk Pd to hydrogen diffusion into α and β phases in 1 nm clusters. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/C7TA07159K |