Comparison of Four Different Types of Ferromagnetic Materials for Fault Current Limiter Applications

A comparison of neodymium, samarium-cobalt, aluminum-nickel-cobalt, and laminated steel is presented for use in fault current limiter applications. The ferromagnetic material properties are modeled using the Preisach method of hysteresis. The nonlinear inductance of each magnetic core is calculated...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power delivery Vol. 28; no. 3; pp. 1491 - 1498
Main Authors Prigmore, Jay R., Mendoza, J. A., Karady, G. G.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.2013
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A comparison of neodymium, samarium-cobalt, aluminum-nickel-cobalt, and laminated steel is presented for use in fault current limiter applications. The ferromagnetic material properties are modeled using the Preisach method of hysteresis. The nonlinear inductance of each magnetic core is calculated and displayed. Only the material properties are changed during each consecutive simulation and are subjected to distribution system parameters to assess their fault current limitation applicability. Finite-element analysis is performed on the casing and coils of the mechanical design structure of the new hybrid fault current limiter. A new fault current limiter topology is presented and simulated in Piecewise Linear Electrical Circuit Simulation. The simulated results show the effect of different materials on the current limiter's performance. Conclusions are made that neodymium is the most suitable ferromagnetic material (of the materials tested) for fault current limiter applications.
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2013.2249537