Calmodulin inhibitor-induced apoptosis was prevented by glycogen synthase kinase-3 inhibitors in PC12 cells

Calmodulin is known to transduce Ca(2+) signals by interacting with specific target proteins. In order to determine the role of calmodulin in regulating neuronal survival and death, we examined, whether calmodulin inhibitors induce caspase-dependent apoptotic cell death, and whether glycogen synthas...

Full description

Saved in:
Bibliographic Details
Published inCellular and molecular neurobiology Vol. 27; no. 6; pp. 783 - 790
Main Authors Takadera, Tsuneo, Ohyashiki, Takao
Format Journal Article
LanguageEnglish
Published United States 01.09.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Calmodulin is known to transduce Ca(2+) signals by interacting with specific target proteins. In order to determine the role of calmodulin in regulating neuronal survival and death, we examined, whether calmodulin inhibitors induce caspase-dependent apoptotic cell death, and whether glycogen synthase kinase-3 is involved in calmodulin inhibitor-induced cell death in PC12 cells. W13, a calmodulin specific inhibitor increased apoptotic cell death with morphological changes characterized by cell shrinkage and nuclear condensation of fragmentation. Glycogen synthase kinase-3 inhibitors prevented calmodulin inhibitor-induced apoptosis. In addition, nerve growth factor and cycloheximide, a protein synthesis inhibitor, completely blocked cell death. Moreover, caspase-3 activation was accompanied by calmodulin inhibitor-induced cell death and inhibited by nerve growth factor. These results suggest that calmodulin inhibitors induce caspase-dependent apoptosis, and the activation of glycogen synthase kinase-3 is involved in the death of PC12 cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0272-4340
1573-6830
DOI:10.1007/s10571-007-9172-y