Characterization of seawater and aerosol particle surfactants using solid phase extraction and mass spectrometry

Surface-active organic molecules (surfactants) may influence the ability of an aerosol particle to act as a cloud condensation nuclei by reducing its surface tension. One source of organic mass in aerosol particles, which may also contain surfactants, is bubble bursting on the sea surface. In order...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental sciences (China) Vol. 108; pp. 164 - 174
Main Authors Burdette, Tret C., Frossard, Amanda A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Surface-active organic molecules (surfactants) may influence the ability of an aerosol particle to act as a cloud condensation nuclei by reducing its surface tension. One source of organic mass in aerosol particles, which may also contain surfactants, is bubble bursting on the sea surface. In order to directly compare these molecules in the ocean and aerosol particles, we developed a method using multiple solid phase extractions and high resolution mass spectrometry to characterize surface active organic molecules in both. This method has extraction efficiencies greater than 85%, 75%, and 60% for anionic, cationic, and nonionic surfactant standards, respectively. In this study, we demonstrate the presence of three ionic classes of surface active organics in atmospheric aerosol particles and estuarine water from Skidaway Island, GA. With this extraction method, organic molecules from both estuarine water and atmospheric aerosol particles significantly reduced surface tension of pure water (surface tension depression of ~ 18 mN/m) and had high ratios of hydrogen to carbon (H/C) and low ratios of oxygen to carbon (O/C), indicative of surfactants. While previous work has observed a larger fraction of anionic surface active organics in seawater and marine aerosol particles, here we show cationic surface active organics may make up a large fraction of the total surface active molecules in estuarine water (43%–47%). [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1001-0742
1878-7320
DOI:10.1016/j.jes.2021.01.026