Existence of spatial patterns in a predator–prey model with self- and cross-diffusion
In this work, we investigate the spatiotemporal dynamics of reaction–diffusion equations subject to cross-diffusion in the frame of a two-dimensional ratio-dependent predator–prey model. The conditions for diffusion-driven instability are obtained and the Turing space in the parameters space is achi...
Saved in:
Published in | Applied mathematics and computation Vol. 226; pp. 320 - 335 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this work, we investigate the spatiotemporal dynamics of reaction–diffusion equations subject to cross-diffusion in the frame of a two-dimensional ratio-dependent predator–prey model. The conditions for diffusion-driven instability are obtained and the Turing space in the parameters space is achieved. Moreover, the criteria for local and global asymptotic stability of the unique positive homogeneous steady state without diffusion are discussed. Numerical simulations are carried out in order to validate the feasibility of the obtained analytical findings. Different types of spatial patterns through diffusion-driven instability of the proposed model are portrayed and analysed. Lastly, the paper finishes with an external discussion of biological relevance of the analysis regarding cross-diffusion and pattern issues. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0096-3003 1873-5649 |
DOI: | 10.1016/j.amc.2013.10.005 |