Galaxy interactions trigger rapid black hole growth: An unprecedented view from the Hyper Suprime-Cam survey

Abstract Collisions and interactions between gas-rich galaxies are thought to be pivotal stages in their formation and evolution, causing the rapid production of new stars, and possibly serving as a mechanism for fueling supermassive black holes (BHs). Harnessing the exquisite spatial resolution (∼0...

Full description

Saved in:
Bibliographic Details
Published inPublications of the Astronomical Society of Japan Vol. 70; no. SP1
Main Authors Goulding, Andy D, Greene, Jenny E, Bezanson, Rachel, Greco, Johnny, Johnson, Sean, Leauthaud, Alexie, Matsuoka, Yoshiki, Medezinski, Elinor, Price-Whelan, Adrian M
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Collisions and interactions between gas-rich galaxies are thought to be pivotal stages in their formation and evolution, causing the rapid production of new stars, and possibly serving as a mechanism for fueling supermassive black holes (BHs). Harnessing the exquisite spatial resolution (∼0${^{\prime\prime}_{.}}$5) afforded by the first ∼170 deg2 of the Hyper Suprime-Cam (HSC) survey, we present our new constraints on the importance of galaxy–galaxy major mergers (1 : 4) in growing BHs throughout the last ∼8 Gyr. Utilizing mid-infrared observations in the WISE all-sky survey, we robustly select active galactic nuclei (AGN) and mass-matched control galaxy samples, totaling ∼140000 spectroscopically confirmed systems at i < 22 mag. We identify galaxy interaction signatures using a novel machine-learning random forest decision tree technique allowing us to select statistically significant samples of major mergers, minor mergers / irregular systems, and non-interacting galaxies. We use these samples to show that galaxies undergoing mergers are a factor of ∼2–7 more likely to contain luminous obscured AGN than non-interacting galaxies, and this is independent of both stellar mass and redshift to z < 0.9. Furthermore, based on our comparison of AGN fractions in mass-matched samples, we determine that the most luminous AGN population (LAGN ≳ 1045 erg s−1) systematically reside in merging systems over non-interacting galaxies. Our findings show that galaxy–galaxy interactions do, on average, trigger luminous AGN activity substantially more often than in secularly evolving non-interacting galaxies, and we further suggest that the BH growth rate may be closely tied to the dynamical time of the merger system.
ISSN:0004-6264
2053-051X
DOI:10.1093/pasj/psx135