Atomistic Modeling of Spinel Oxide Particle Shapes and Reshaping under OER Conditions

The surface configurations of the low-index facets of a set of spinel oxides are investigated using DFT+U calculations to derive surface energies and predict equilibrium nanoparticle shapes via the Wulff construction. Two very different conditions are investigated, corresponding to application eithe...

Full description

Saved in:
Bibliographic Details
Published inPhyschem Vol. 4; no. 1; pp. 43 - 60
Main Authors Avcı, Öyküm N., Sementa, Luca, Fortunelli, Alessandro
Format Journal Article
LanguageEnglish
Published Uppsala MDPI AG 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The surface configurations of the low-index facets of a set of spinel oxides are investigated using DFT+U calculations to derive surface energies and predict equilibrium nanoparticle shapes via the Wulff construction. Two very different conditions are investigated, corresponding to application either in heterogeneous catalysis or in electrocatalysis. First, the bare stoichiometric surfaces of NiFe2O4, CoFe2O4, NiCo2O4, and ZnCo2O4 spinels are studied to model their use as high-temperature oxidation catalysts. Second, focusing attention on the electrochemical oxygen evolution reaction (OER) and on the CoFe2O4 inverse spinel as the most promising OER catalyst, we generate surface configurations by adsorbing OER intermediates and, in an innovative study, we recalculate surface energies taking into account adsorption and environmental conditions, i.e., applied electrode potential and O2 pressure. We predict that under OER operating conditions, (111) facets are dominant in CoFe2O4 nanoparticle shapes, in fair agreement with microscopy measurements. Importantly, in the OER case, we predict a strong dependence of nanoparticle shape upon O2 pressure. Increasing O2 pressure increases the size of the higher-index (111) and (110) facets at the expense of the (001) more catalytically active facet, whereas the opposite occurs at low O2 pressure. These predictions should be experimentally verifiable and help define the optimal OER operative conditions.
ISSN:2673-7167
2673-7167
DOI:10.3390/physchem4010004