Modelling pest dynamics of new crop cultivars: The FB920 banana with the Helicotylenchus multicinctus– Radopholus similis nematode complex in Martinique

The synthetic banana hybrid FB920 ( Musa spp., AAA group) has been designed to be resistant to Sigatoka and Black Leaf Streak Diseases, caused respectively by Mycosphaerella musicola and Mycosphaerella fijiensis. In addition to these features, the hybrids seem less susceptible to plant-parasitic nem...

Full description

Saved in:
Bibliographic Details
Published inCrop protection Vol. 27; no. 11; pp. 1427 - 1431
Main Authors Tixier, P., Salmon, F., Chabrier, C., Quénéhervé, P.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2008
[Amsterdam]: Elsevier Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The synthetic banana hybrid FB920 ( Musa spp., AAA group) has been designed to be resistant to Sigatoka and Black Leaf Streak Diseases, caused respectively by Mycosphaerella musicola and Mycosphaerella fijiensis. In addition to these features, the hybrids seem less susceptible to plant-parasitic nematodes, especially the burrowing nematodes ( Radopholus similis) and the lesion nematode ( Pratylenchus coffeae) than classic Cavendish cultivars, such as Williams, Grande Naine, or Poyo. This genetic modification drastically reduces pesticide use. Herein, we used the SIMBA model (a model to simulate phenology, growth, and plant-parasitic nematode/banana interactions) to examine the population dynamics of plant-parasitic nematodes in cropping systems with hybrid FB920 in various initial conditions. Results from field observations and simulations show that in the long-term, the spiral nematodes ( Helicotylenchus multicinctus) can overtake the burrowing nematodes and that nematode populations are smaller than in Cavendish banana fields. This reduced capacity of FB920 to support multiplication of R. similis reduces the use of pesticides and thus re-creates favourable conditions for fauna, thereby increasing the global sustainability and resilience of banana agro-ecosystems.
Bibliography:http://dx.doi.org/10.1016/j.cropro.2008.06.004
ISSN:0261-2194
1873-6904
DOI:10.1016/j.cropro.2008.06.004