Nonlinear discrete Sturm–Liouville problems
In this paper we study nonlinear boundary value problems of the form Δ [ p ( t − 1 ) Δ y ( t − 1 ) ] + q ( t ) y ( t ) + λ y ( t ) = f ( y ( t ) ) ; t = a + 1 , … , b + 1 , subject to a 11 y ( a ) + a 12 Δ y ( a ) = 0 and a 21 y ( b + 1 ) + a 22 Δ y ( b + 1 ) = 0 . The parameter λ is an eigenvalue o...
Saved in:
Published in | Journal of mathematical analysis and applications Vol. 308; no. 1; pp. 380 - 391 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
San Diego, CA
Elsevier Inc
01.08.2005
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0022-247X 1096-0813 |
DOI | 10.1016/j.jmaa.2005.01.032 |
Cover
Loading…
Abstract | In this paper we study nonlinear boundary value problems of the form
Δ
[
p
(
t
−
1
)
Δ
y
(
t
−
1
)
]
+
q
(
t
)
y
(
t
)
+
λ
y
(
t
)
=
f
(
y
(
t
)
)
;
t
=
a
+
1
,
…
,
b
+
1
,
subject to
a
11
y
(
a
)
+
a
12
Δ
y
(
a
)
=
0
and
a
21
y
(
b
+
1
)
+
a
22
Δ
y
(
b
+
1
)
=
0
.
The parameter
λ is an eigenvalue of the associated linear problem; that is, there is a nontrivial function
u that satisfies the boundary conditions and also
Δ
[
p
(
t
−
1
)
Δ
u
(
t
−
1
)
]
+
q
(
t
)
u
(
t
)
+
λ
u
(
t
)
=
0
for
t in
{
a
+
1
,
a
+
2
,
…
,
b
+
1
}
.
We establish sufficient conditions for the solvability of such problems. In addition, in those cases where the nonlinearity is “small,” we provide a qualitative analysis of the relation between solutions of the nonlinear problem and eigenfunctions of the linear one. |
---|---|
AbstractList | In this paper we study nonlinear boundary value problems of the form
Δ
[
p
(
t
−
1
)
Δ
y
(
t
−
1
)
]
+
q
(
t
)
y
(
t
)
+
λ
y
(
t
)
=
f
(
y
(
t
)
)
;
t
=
a
+
1
,
…
,
b
+
1
,
subject to
a
11
y
(
a
)
+
a
12
Δ
y
(
a
)
=
0
and
a
21
y
(
b
+
1
)
+
a
22
Δ
y
(
b
+
1
)
=
0
.
The parameter
λ is an eigenvalue of the associated linear problem; that is, there is a nontrivial function
u that satisfies the boundary conditions and also
Δ
[
p
(
t
−
1
)
Δ
u
(
t
−
1
)
]
+
q
(
t
)
u
(
t
)
+
λ
u
(
t
)
=
0
for
t in
{
a
+
1
,
a
+
2
,
…
,
b
+
1
}
.
We establish sufficient conditions for the solvability of such problems. In addition, in those cases where the nonlinearity is “small,” we provide a qualitative analysis of the relation between solutions of the nonlinear problem and eigenfunctions of the linear one. |
Author | Rodriguez, Jesús |
Author_xml | – sequence: 1 givenname: Jesús surname: Rodriguez fullname: Rodriguez, Jesús email: rodrigu@math.ncsu.edu organization: Department of Mathematics, Box 8205, North Carolina State University, Raleigh, NC 27695-8205, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16876522$$DView record in Pascal Francis |
BookMark | eNp9kM1KAzEURoMo2FZfwFU3Lme8SSZJB9xI8Q-KLlRwF-5k7kCG-SnJtODOd_ANfRKnVBBcdHU353xwz5Qdd31HjF1wSDlwfVWndYuYCgCVAk9BiiM24ZDrBBZcHrMJgBCJyMz7KZvGWANwrgyfsOSp7xrfEYZ56aMLNND8ZdiE9vvza-X7zdY3Dc3XoS8aauMZO6mwiXT-e2fs7e72dfmQrJ7vH5c3q8RJCUOiuJYZClNClotCcMiMcaBQl66gQspKIyqgrKJcZobr3BiUGTjkSkHpSM7Y5X53jdFhUwXsnI92HXyL4cNyvTBaCTFyYs-50McYqPpDwO7C2NruwthdGAvcjmFGafFPcn7AwffdENA3h9XrvUrj81tPwUbnqXNU-kBusGXvD-k_xuOAYg |
CODEN | JMANAK |
CitedBy_id | crossref_primary_10_1515_ms_2017_0169 crossref_primary_10_1155_2008_469815 crossref_primary_10_1155_2015_468648 crossref_primary_10_1186_1687_1847_2012_3 crossref_primary_10_1080_00036810801911280 crossref_primary_10_1186_s13662_018_1929_8 crossref_primary_10_1016_j_na_2008_03_047 crossref_primary_10_1080_10236198_2015_1078328 crossref_primary_10_1016_j_na_2007_03_038 crossref_primary_10_1080_10236198_2010_505237 crossref_primary_10_1016_j_na_2011_06_046 crossref_primary_10_3934_era_2024077 crossref_primary_10_1016_j_jmaa_2006_06_024 crossref_primary_10_1016_j_jmaa_2011_08_079 crossref_primary_10_1155_2010_757416 crossref_primary_10_1080_10236190903150161 crossref_primary_10_1016_j_jmaa_2011_06_028 crossref_primary_10_1080_10236190903158982 crossref_primary_10_1155_2007_96415 crossref_primary_10_1080_10236190802688352 crossref_primary_10_1080_10236198_2021_2017426 crossref_primary_10_1186_1687_1847_2014_188 crossref_primary_10_1016_j_na_2006_09_058 crossref_primary_10_1186_1687_1847_2014_125 crossref_primary_10_1080_10236198_2019_1585831 crossref_primary_10_1155_2009_671625 crossref_primary_10_1016_j_amc_2010_01_112 crossref_primary_10_1080_10236198_2019_1641497 crossref_primary_10_1155_2009_360871 crossref_primary_10_1155_2011_624157 crossref_primary_10_1155_2014_590968 crossref_primary_10_1016_j_camwa_2007_03_001 crossref_primary_10_1155_2012_951251 crossref_primary_10_1080_10236198_2015_1083016 crossref_primary_10_3390_math12060849 crossref_primary_10_1080_10236198_2018_1551378 crossref_primary_10_1007_s43034_021_00153_6 crossref_primary_10_11948_2017010 |
Cites_doi | 10.1307/mmj/1028999194 10.1016/0022-0396(82)90088-2 10.1016/0022-0396(85)90017-8 10.1080/00036818508839551 10.1080/00036819608840473 10.1080/10236199808808133 10.1016/0022-0396(92)90086-3 |
ContentType | Journal Article |
Copyright | 2005 Elsevier Inc. 2005 INIST-CNRS |
Copyright_xml | – notice: 2005 Elsevier Inc. – notice: 2005 INIST-CNRS |
DBID | 6I. AAFTH AAYXX CITATION IQODW |
DOI | 10.1016/j.jmaa.2005.01.032 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1096-0813 |
EndPage | 391 |
ExternalDocumentID | 16876522 10_1016_j_jmaa_2005_01_032 S0022247X05000521 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 85S 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AETEA AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 TWZ UPT VH1 VOH WH7 WUQ XOL XPP YQT YYP ZCG ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW |
ID | FETCH-LOGICAL-c330t-51634a27d0492b210477c05a6dcbeb33f6aa50e4fe934716977a340ca1550dce3 |
IEDL.DBID | AIKHN |
ISSN | 0022-247X |
IngestDate | Mon Jul 21 09:16:40 EDT 2025 Tue Jul 01 02:40:27 EDT 2025 Thu Apr 24 23:08:39 EDT 2025 Fri Feb 23 02:18:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Implicit Function Theorem Boundary value problems Brower Fixed Point Theorem Sturm Liouville problem Sufficient condition Boundary value problem Fixed point theorem Mathematical analysis Nonlinearity Implicit function theorem Nonlinear problems Solvability |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c330t-51634a27d0492b210477c05a6dcbeb33f6aa50e4fe934716977a340ca1550dce3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0022247X05000521 |
PageCount | 12 |
ParticipantIDs | pascalfrancis_primary_16876522 crossref_primary_10_1016_j_jmaa_2005_01_032 crossref_citationtrail_10_1016_j_jmaa_2005_01_032 elsevier_sciencedirect_doi_10_1016_j_jmaa_2005_01_032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-08-01 |
PublicationDateYYYYMMDD | 2005-08-01 |
PublicationDate_xml | – month: 08 year: 2005 text: 2005-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | San Diego, CA |
PublicationPlace_xml | – name: San Diego, CA |
PublicationTitle | Journal of mathematical analysis and applications |
PublicationYear | 2005 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Rouche, Mawhin (bib012) 1980 Hale (bib005) 1969 Kelley, Peterson (bib006) 1991 Rodriguez (bib008) 1982; 43 Rodriguez, Sweet (bib011) 1985; 58 Cesari (bib002) 1964; 11 Lang (bib007) 1968 Rodriguez (bib010) 1992; 97 Cesari (bib001) 1963; 1 Etheridge, Rodriguez (bib004) 1998; 4 Etheridge, Rodriguez (bib003) 1996; 62 Rodriguez (bib009) 1985; 19 Cesari (10.1016/j.jmaa.2005.01.032_bib001) 1963; 1 Kelley (10.1016/j.jmaa.2005.01.032_bib006) 1991 Etheridge (10.1016/j.jmaa.2005.01.032_bib004) 1998; 4 Hale (10.1016/j.jmaa.2005.01.032_bib005) 1969 Rodriguez (10.1016/j.jmaa.2005.01.032_bib011) 1985; 58 Rodriguez (10.1016/j.jmaa.2005.01.032_bib010) 1992; 97 Rodriguez (10.1016/j.jmaa.2005.01.032_bib009) 1985; 19 Cesari (10.1016/j.jmaa.2005.01.032_bib002) 1964; 11 Lang (10.1016/j.jmaa.2005.01.032_bib007) 1968 Rodriguez (10.1016/j.jmaa.2005.01.032_bib008) 1982; 43 Rouche (10.1016/j.jmaa.2005.01.032_bib012) 1980 Etheridge (10.1016/j.jmaa.2005.01.032_bib003) 1996; 62 |
References_xml | – year: 1991 ident: bib006 article-title: Difference Equations – volume: 62 start-page: 119 year: 1996 end-page: 137 ident: bib003 article-title: Periodic solutions of nonlinear discrete-time systems publication-title: Appl. Anal. – year: 1980 ident: bib012 article-title: Ordinary Differential Equations: Stability and Periodic Solutions – volume: 58 start-page: 282 year: 1985 end-page: 293 ident: bib011 article-title: Projection methods for nonlinear boundary value problems publication-title: J. Differential Equations – volume: 4 start-page: 127 year: 1998 end-page: 144 ident: bib004 article-title: Scalar discrete nonlinear two-point boundary value problems publication-title: J. Difference Equations – volume: 97 start-page: 112 year: 1992 end-page: 126 ident: bib010 article-title: Galerkin's method for ordinary differential equations subject to generalized nonlinear boundary conditions publication-title: J. Differential Equations – volume: 19 start-page: 265 year: 1985 end-page: 274 ident: bib009 article-title: On resonant discrete boundary value problems publication-title: Appl. Anal. – year: 1968 ident: bib007 article-title: Analysis I – volume: 11 start-page: 385 year: 1964 end-page: 414 ident: bib002 article-title: Functional analysis and Galerkin's method publication-title: Michigan Math. J. – year: 1969 ident: bib005 article-title: Ordinary Differential Equations – volume: 1 start-page: 149 year: 1963 end-page: 187 ident: bib001 article-title: Functional analysis and periodic solutions of nonlinear differential equations publication-title: Contrib. Differential Equations – volume: 43 start-page: 157 year: 1982 end-page: 167 ident: bib008 article-title: An alternative method for boundary value problems with large nonlinearities publication-title: J. Differential Equations – year: 1980 ident: 10.1016/j.jmaa.2005.01.032_bib012 – year: 1968 ident: 10.1016/j.jmaa.2005.01.032_bib007 – volume: 11 start-page: 385 year: 1964 ident: 10.1016/j.jmaa.2005.01.032_bib002 article-title: Functional analysis and Galerkin's method publication-title: Michigan Math. J. doi: 10.1307/mmj/1028999194 – year: 1969 ident: 10.1016/j.jmaa.2005.01.032_bib005 – volume: 1 start-page: 149 year: 1963 ident: 10.1016/j.jmaa.2005.01.032_bib001 article-title: Functional analysis and periodic solutions of nonlinear differential equations publication-title: Contrib. Differential Equations – volume: 43 start-page: 157 year: 1982 ident: 10.1016/j.jmaa.2005.01.032_bib008 article-title: An alternative method for boundary value problems with large nonlinearities publication-title: J. Differential Equations doi: 10.1016/0022-0396(82)90088-2 – volume: 58 start-page: 282 year: 1985 ident: 10.1016/j.jmaa.2005.01.032_bib011 article-title: Projection methods for nonlinear boundary value problems publication-title: J. Differential Equations doi: 10.1016/0022-0396(85)90017-8 – volume: 19 start-page: 265 year: 1985 ident: 10.1016/j.jmaa.2005.01.032_bib009 article-title: On resonant discrete boundary value problems publication-title: Appl. Anal. doi: 10.1080/00036818508839551 – volume: 62 start-page: 119 year: 1996 ident: 10.1016/j.jmaa.2005.01.032_bib003 article-title: Periodic solutions of nonlinear discrete-time systems publication-title: Appl. Anal. doi: 10.1080/00036819608840473 – volume: 4 start-page: 127 year: 1998 ident: 10.1016/j.jmaa.2005.01.032_bib004 article-title: Scalar discrete nonlinear two-point boundary value problems publication-title: J. Difference Equations doi: 10.1080/10236199808808133 – year: 1991 ident: 10.1016/j.jmaa.2005.01.032_bib006 – volume: 97 start-page: 112 year: 1992 ident: 10.1016/j.jmaa.2005.01.032_bib010 article-title: Galerkin's method for ordinary differential equations subject to generalized nonlinear boundary conditions publication-title: J. Differential Equations doi: 10.1016/0022-0396(92)90086-3 |
SSID | ssj0011571 |
Score | 2.009505 |
Snippet | In this paper we study nonlinear boundary value problems of the form
Δ
[
p
(
t
−
1
)
Δ
y
(
t
−
1
)
]
+
q
(
t
)
y
(
t
)
+
λ
y
(
t
)
=
f
(
y
(
t
)
)
;
t
=
a
+
1... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 380 |
SubjectTerms | Boundary value problems Brower Fixed Point Theorem Exact sciences and technology Global analysis, analysis on manifolds Implicit Function Theorem Mathematical analysis Mathematics Ordinary differential equations Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
Title | Nonlinear discrete Sturm–Liouville problems |
URI | https://dx.doi.org/10.1016/j.jmaa.2005.01.032 |
Volume | 308 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gXDTG-Iz4ID14M8Xd7osekUhAhINK5Nbs9pFA5BEeHo3_wX_oL3GWblEOcvDUZNNtm9ntzDc7M98gdJWEJvrmxy6RFewyEUlX80S4TJEoiWREWWIO9Nsd0eiy-x7v5VAtq4UxaZVW96c6famt7ciNlebNpN83Nb5g25jsYb6MV4ELVPCoL2BrF6rNVqOzCiYQLklGGm4m2NqZNM1rMFTKHq2QMqbeX_Zpd6JmILUkbXfxywbV99GeBY9ONf2-A5SLR4dop71iXp0dIbeTcl-oqWMKbqeAiZ0nMCvDr4_Ph_548WZq_xzbRmZ2jLr1u-daw7UtEdyQUjx3OcAnpjwZAbD3tGd4FmSIuRJRqMEtpolQiuOYJbFPmSHCkVJRhkNlPJEojOkJyo_Go_gUOVrTGNw7hf1KCD6y1pgnlGj4nysVESlRRCQTRBBavnDTtuI1yBLDBoERnmlkyQNMAhBeEV2v5kxStoyNd_NMvsHamgegzjfOK60txs-rBOh2AJRn_3zwOdpeMrMu8_suUH4-XcSXgDnmuoS2yu-kZHeWubYeX1ow2uzdfgNIU9eW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcgCEEKsoaw7cUFon3tojqqgKtL3QSr1FdhxLreiiLhwR_8Af8iWME6fQAz1wjewkGntm3tgzbxC6NbG9faslfiCq2KdcC18xw30qA2200IQae6Df7vBmjz71Wb-A6nktjE2rdLY_s-mptXZPKk6alelgYGt8wbdR0ccsva-CEGiLgvpa7Sy_r_I8LJlMkFOG2-GuciZL8hqOpHQHK0EZk_Av77Q3lXOQmcmaXfzyQI0DtO-go3ef_d0hKiTjI7TbXvGuzo-R38mYL-TMs-W2M0DE3gs4ldHXx2drMFm-2co_zzWRmZ-gXuOhW2_6riGCHxOCFz4D8ERlKDTA-lCFlmVBxJhJrmMFQTExXEqGE2qSGqGWBkcISSiOpY1DdJyQU1QcT8bJGfKUIgkEdxLXqjFEyEphZkigQJurVa4lL6EgF0QUO7Zw27TiNcrTwoaRFZ5tY8kiHEQgvBK6W82ZZlwZG0ezXL7R2opHYMw3zrteW4yfT3Gw7AAnz__54hu03ey2W1HrsfN8gXZSjtY00-8SFRezZXIF6GOhrtPd9Q1Gv9Wz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+discrete+Sturm%E2%80%93Liouville+problems&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Rodriguez%2C+Jes%C3%BAs&rft.date=2005-08-01&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=308&rft.issue=1&rft.spage=380&rft.epage=391&rft_id=info:doi/10.1016%2Fj.jmaa.2005.01.032&rft.externalDocID=S0022247X05000521 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon |