Nonlinear discrete Sturm–Liouville problems

In this paper we study nonlinear boundary value problems of the form Δ [ p ( t − 1 ) Δ y ( t − 1 ) ] + q ( t ) y ( t ) + λ y ( t ) = f ( y ( t ) ) ; t = a + 1 , … , b + 1 , subject to a 11 y ( a ) + a 12 Δ y ( a ) = 0 and a 21 y ( b + 1 ) + a 22 Δ y ( b + 1 ) = 0 . The parameter λ is an eigenvalue o...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical analysis and applications Vol. 308; no. 1; pp. 380 - 391
Main Author Rodriguez, Jesús
Format Journal Article
LanguageEnglish
Published San Diego, CA Elsevier Inc 01.08.2005
Elsevier
Subjects
Online AccessGet full text
ISSN0022-247X
1096-0813
DOI10.1016/j.jmaa.2005.01.032

Cover

Loading…
Abstract In this paper we study nonlinear boundary value problems of the form Δ [ p ( t − 1 ) Δ y ( t − 1 ) ] + q ( t ) y ( t ) + λ y ( t ) = f ( y ( t ) ) ; t = a + 1 , … , b + 1 , subject to a 11 y ( a ) + a 12 Δ y ( a ) = 0 and a 21 y ( b + 1 ) + a 22 Δ y ( b + 1 ) = 0 . The parameter λ is an eigenvalue of the associated linear problem; that is, there is a nontrivial function u that satisfies the boundary conditions and also Δ [ p ( t − 1 ) Δ u ( t − 1 ) ] + q ( t ) u ( t ) + λ u ( t ) = 0 for t in { a + 1 , a + 2 , … , b + 1 } . We establish sufficient conditions for the solvability of such problems. In addition, in those cases where the nonlinearity is “small,” we provide a qualitative analysis of the relation between solutions of the nonlinear problem and eigenfunctions of the linear one.
AbstractList In this paper we study nonlinear boundary value problems of the form Δ [ p ( t − 1 ) Δ y ( t − 1 ) ] + q ( t ) y ( t ) + λ y ( t ) = f ( y ( t ) ) ; t = a + 1 , … , b + 1 , subject to a 11 y ( a ) + a 12 Δ y ( a ) = 0 and a 21 y ( b + 1 ) + a 22 Δ y ( b + 1 ) = 0 . The parameter λ is an eigenvalue of the associated linear problem; that is, there is a nontrivial function u that satisfies the boundary conditions and also Δ [ p ( t − 1 ) Δ u ( t − 1 ) ] + q ( t ) u ( t ) + λ u ( t ) = 0 for t in { a + 1 , a + 2 , … , b + 1 } . We establish sufficient conditions for the solvability of such problems. In addition, in those cases where the nonlinearity is “small,” we provide a qualitative analysis of the relation between solutions of the nonlinear problem and eigenfunctions of the linear one.
Author Rodriguez, Jesús
Author_xml – sequence: 1
  givenname: Jesús
  surname: Rodriguez
  fullname: Rodriguez, Jesús
  email: rodrigu@math.ncsu.edu
  organization: Department of Mathematics, Box 8205, North Carolina State University, Raleigh, NC 27695-8205, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16876522$$DView record in Pascal Francis
BookMark eNp9kM1KAzEURoMo2FZfwFU3Lme8SSZJB9xI8Q-KLlRwF-5k7kCG-SnJtODOd_ANfRKnVBBcdHU353xwz5Qdd31HjF1wSDlwfVWndYuYCgCVAk9BiiM24ZDrBBZcHrMJgBCJyMz7KZvGWANwrgyfsOSp7xrfEYZ56aMLNND8ZdiE9vvza-X7zdY3Dc3XoS8aauMZO6mwiXT-e2fs7e72dfmQrJ7vH5c3q8RJCUOiuJYZClNClotCcMiMcaBQl66gQspKIyqgrKJcZobr3BiUGTjkSkHpSM7Y5X53jdFhUwXsnI92HXyL4cNyvTBaCTFyYs-50McYqPpDwO7C2NruwthdGAvcjmFGafFPcn7AwffdENA3h9XrvUrj81tPwUbnqXNU-kBusGXvD-k_xuOAYg
CODEN JMANAK
CitedBy_id crossref_primary_10_1515_ms_2017_0169
crossref_primary_10_1155_2008_469815
crossref_primary_10_1155_2015_468648
crossref_primary_10_1186_1687_1847_2012_3
crossref_primary_10_1080_00036810801911280
crossref_primary_10_1186_s13662_018_1929_8
crossref_primary_10_1016_j_na_2008_03_047
crossref_primary_10_1080_10236198_2015_1078328
crossref_primary_10_1016_j_na_2007_03_038
crossref_primary_10_1080_10236198_2010_505237
crossref_primary_10_1016_j_na_2011_06_046
crossref_primary_10_3934_era_2024077
crossref_primary_10_1016_j_jmaa_2006_06_024
crossref_primary_10_1016_j_jmaa_2011_08_079
crossref_primary_10_1155_2010_757416
crossref_primary_10_1080_10236190903150161
crossref_primary_10_1016_j_jmaa_2011_06_028
crossref_primary_10_1080_10236190903158982
crossref_primary_10_1155_2007_96415
crossref_primary_10_1080_10236190802688352
crossref_primary_10_1080_10236198_2021_2017426
crossref_primary_10_1186_1687_1847_2014_188
crossref_primary_10_1016_j_na_2006_09_058
crossref_primary_10_1186_1687_1847_2014_125
crossref_primary_10_1080_10236198_2019_1585831
crossref_primary_10_1155_2009_671625
crossref_primary_10_1016_j_amc_2010_01_112
crossref_primary_10_1080_10236198_2019_1641497
crossref_primary_10_1155_2009_360871
crossref_primary_10_1155_2011_624157
crossref_primary_10_1155_2014_590968
crossref_primary_10_1016_j_camwa_2007_03_001
crossref_primary_10_1155_2012_951251
crossref_primary_10_1080_10236198_2015_1083016
crossref_primary_10_3390_math12060849
crossref_primary_10_1080_10236198_2018_1551378
crossref_primary_10_1007_s43034_021_00153_6
crossref_primary_10_11948_2017010
Cites_doi 10.1307/mmj/1028999194
10.1016/0022-0396(82)90088-2
10.1016/0022-0396(85)90017-8
10.1080/00036818508839551
10.1080/00036819608840473
10.1080/10236199808808133
10.1016/0022-0396(92)90086-3
ContentType Journal Article
Copyright 2005 Elsevier Inc.
2005 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier Inc.
– notice: 2005 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.jmaa.2005.01.032
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0813
EndPage 391
ExternalDocumentID 16876522
10_1016_j_jmaa_2005_01_032
S0022247X05000521
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
85S
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
VH1
VOH
WH7
WUQ
XOL
XPP
YQT
YYP
ZCG
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c330t-51634a27d0492b210477c05a6dcbeb33f6aa50e4fe934716977a340ca1550dce3
IEDL.DBID AIKHN
ISSN 0022-247X
IngestDate Mon Jul 21 09:16:40 EDT 2025
Tue Jul 01 02:40:27 EDT 2025
Thu Apr 24 23:08:39 EDT 2025
Fri Feb 23 02:18:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Implicit Function Theorem
Boundary value problems
Brower Fixed Point Theorem
Sturm Liouville problem
Sufficient condition
Boundary value problem
Fixed point theorem
Mathematical analysis
Nonlinearity
Implicit function theorem
Nonlinear problems
Solvability
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-51634a27d0492b210477c05a6dcbeb33f6aa50e4fe934716977a340ca1550dce3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0022247X05000521
PageCount 12
ParticipantIDs pascalfrancis_primary_16876522
crossref_primary_10_1016_j_jmaa_2005_01_032
crossref_citationtrail_10_1016_j_jmaa_2005_01_032
elsevier_sciencedirect_doi_10_1016_j_jmaa_2005_01_032
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-08-01
PublicationDateYYYYMMDD 2005-08-01
PublicationDate_xml – month: 08
  year: 2005
  text: 2005-08-01
  day: 01
PublicationDecade 2000
PublicationPlace San Diego, CA
PublicationPlace_xml – name: San Diego, CA
PublicationTitle Journal of mathematical analysis and applications
PublicationYear 2005
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Rouche, Mawhin (bib012) 1980
Hale (bib005) 1969
Kelley, Peterson (bib006) 1991
Rodriguez (bib008) 1982; 43
Rodriguez, Sweet (bib011) 1985; 58
Cesari (bib002) 1964; 11
Lang (bib007) 1968
Rodriguez (bib010) 1992; 97
Cesari (bib001) 1963; 1
Etheridge, Rodriguez (bib004) 1998; 4
Etheridge, Rodriguez (bib003) 1996; 62
Rodriguez (bib009) 1985; 19
Cesari (10.1016/j.jmaa.2005.01.032_bib001) 1963; 1
Kelley (10.1016/j.jmaa.2005.01.032_bib006) 1991
Etheridge (10.1016/j.jmaa.2005.01.032_bib004) 1998; 4
Hale (10.1016/j.jmaa.2005.01.032_bib005) 1969
Rodriguez (10.1016/j.jmaa.2005.01.032_bib011) 1985; 58
Rodriguez (10.1016/j.jmaa.2005.01.032_bib010) 1992; 97
Rodriguez (10.1016/j.jmaa.2005.01.032_bib009) 1985; 19
Cesari (10.1016/j.jmaa.2005.01.032_bib002) 1964; 11
Lang (10.1016/j.jmaa.2005.01.032_bib007) 1968
Rodriguez (10.1016/j.jmaa.2005.01.032_bib008) 1982; 43
Rouche (10.1016/j.jmaa.2005.01.032_bib012) 1980
Etheridge (10.1016/j.jmaa.2005.01.032_bib003) 1996; 62
References_xml – year: 1991
  ident: bib006
  article-title: Difference Equations
– volume: 62
  start-page: 119
  year: 1996
  end-page: 137
  ident: bib003
  article-title: Periodic solutions of nonlinear discrete-time systems
  publication-title: Appl. Anal.
– year: 1980
  ident: bib012
  article-title: Ordinary Differential Equations: Stability and Periodic Solutions
– volume: 58
  start-page: 282
  year: 1985
  end-page: 293
  ident: bib011
  article-title: Projection methods for nonlinear boundary value problems
  publication-title: J. Differential Equations
– volume: 4
  start-page: 127
  year: 1998
  end-page: 144
  ident: bib004
  article-title: Scalar discrete nonlinear two-point boundary value problems
  publication-title: J. Difference Equations
– volume: 97
  start-page: 112
  year: 1992
  end-page: 126
  ident: bib010
  article-title: Galerkin's method for ordinary differential equations subject to generalized nonlinear boundary conditions
  publication-title: J. Differential Equations
– volume: 19
  start-page: 265
  year: 1985
  end-page: 274
  ident: bib009
  article-title: On resonant discrete boundary value problems
  publication-title: Appl. Anal.
– year: 1968
  ident: bib007
  article-title: Analysis I
– volume: 11
  start-page: 385
  year: 1964
  end-page: 414
  ident: bib002
  article-title: Functional analysis and Galerkin's method
  publication-title: Michigan Math. J.
– year: 1969
  ident: bib005
  article-title: Ordinary Differential Equations
– volume: 1
  start-page: 149
  year: 1963
  end-page: 187
  ident: bib001
  article-title: Functional analysis and periodic solutions of nonlinear differential equations
  publication-title: Contrib. Differential Equations
– volume: 43
  start-page: 157
  year: 1982
  end-page: 167
  ident: bib008
  article-title: An alternative method for boundary value problems with large nonlinearities
  publication-title: J. Differential Equations
– year: 1980
  ident: 10.1016/j.jmaa.2005.01.032_bib012
– year: 1968
  ident: 10.1016/j.jmaa.2005.01.032_bib007
– volume: 11
  start-page: 385
  year: 1964
  ident: 10.1016/j.jmaa.2005.01.032_bib002
  article-title: Functional analysis and Galerkin's method
  publication-title: Michigan Math. J.
  doi: 10.1307/mmj/1028999194
– year: 1969
  ident: 10.1016/j.jmaa.2005.01.032_bib005
– volume: 1
  start-page: 149
  year: 1963
  ident: 10.1016/j.jmaa.2005.01.032_bib001
  article-title: Functional analysis and periodic solutions of nonlinear differential equations
  publication-title: Contrib. Differential Equations
– volume: 43
  start-page: 157
  year: 1982
  ident: 10.1016/j.jmaa.2005.01.032_bib008
  article-title: An alternative method for boundary value problems with large nonlinearities
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(82)90088-2
– volume: 58
  start-page: 282
  year: 1985
  ident: 10.1016/j.jmaa.2005.01.032_bib011
  article-title: Projection methods for nonlinear boundary value problems
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(85)90017-8
– volume: 19
  start-page: 265
  year: 1985
  ident: 10.1016/j.jmaa.2005.01.032_bib009
  article-title: On resonant discrete boundary value problems
  publication-title: Appl. Anal.
  doi: 10.1080/00036818508839551
– volume: 62
  start-page: 119
  year: 1996
  ident: 10.1016/j.jmaa.2005.01.032_bib003
  article-title: Periodic solutions of nonlinear discrete-time systems
  publication-title: Appl. Anal.
  doi: 10.1080/00036819608840473
– volume: 4
  start-page: 127
  year: 1998
  ident: 10.1016/j.jmaa.2005.01.032_bib004
  article-title: Scalar discrete nonlinear two-point boundary value problems
  publication-title: J. Difference Equations
  doi: 10.1080/10236199808808133
– year: 1991
  ident: 10.1016/j.jmaa.2005.01.032_bib006
– volume: 97
  start-page: 112
  year: 1992
  ident: 10.1016/j.jmaa.2005.01.032_bib010
  article-title: Galerkin's method for ordinary differential equations subject to generalized nonlinear boundary conditions
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(92)90086-3
SSID ssj0011571
Score 2.009505
Snippet In this paper we study nonlinear boundary value problems of the form Δ [ p ( t − 1 ) Δ y ( t − 1 ) ] + q ( t ) y ( t ) + λ y ( t ) = f ( y ( t ) ) ; t = a + 1...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 380
SubjectTerms Boundary value problems
Brower Fixed Point Theorem
Exact sciences and technology
Global analysis, analysis on manifolds
Implicit Function Theorem
Mathematical analysis
Mathematics
Ordinary differential equations
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Title Nonlinear discrete Sturm–Liouville problems
URI https://dx.doi.org/10.1016/j.jmaa.2005.01.032
Volume 308
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gXDTG-Iz4ID14M8Xd7osekUhAhINK5Nbs9pFA5BEeHo3_wX_oL3GWblEOcvDUZNNtm9ntzDc7M98gdJWEJvrmxy6RFewyEUlX80S4TJEoiWREWWIO9Nsd0eiy-x7v5VAtq4UxaZVW96c6famt7ciNlebNpN83Nb5g25jsYb6MV4ELVPCoL2BrF6rNVqOzCiYQLklGGm4m2NqZNM1rMFTKHq2QMqbeX_Zpd6JmILUkbXfxywbV99GeBY9ONf2-A5SLR4dop71iXp0dIbeTcl-oqWMKbqeAiZ0nMCvDr4_Ph_548WZq_xzbRmZ2jLr1u-daw7UtEdyQUjx3OcAnpjwZAbD3tGd4FmSIuRJRqMEtpolQiuOYJbFPmSHCkVJRhkNlPJEojOkJyo_Go_gUOVrTGNw7hf1KCD6y1pgnlGj4nysVESlRRCQTRBBavnDTtuI1yBLDBoERnmlkyQNMAhBeEV2v5kxStoyNd_NMvsHamgegzjfOK60txs-rBOh2AJRn_3zwOdpeMrMu8_suUH4-XcSXgDnmuoS2yu-kZHeWubYeX1ow2uzdfgNIU9eW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcgCEEKsoaw7cUFon3tojqqgKtL3QSr1FdhxLreiiLhwR_8Af8iWME6fQAz1wjewkGntm3tgzbxC6NbG9faslfiCq2KdcC18xw30qA2200IQae6Df7vBmjz71Wb-A6nktjE2rdLY_s-mptXZPKk6alelgYGt8wbdR0ccsva-CEGiLgvpa7Sy_r_I8LJlMkFOG2-GuciZL8hqOpHQHK0EZk_Av77Q3lXOQmcmaXfzyQI0DtO-go3ef_d0hKiTjI7TbXvGuzo-R38mYL-TMs-W2M0DE3gs4ldHXx2drMFm-2co_zzWRmZ-gXuOhW2_6riGCHxOCFz4D8ERlKDTA-lCFlmVBxJhJrmMFQTExXEqGE2qSGqGWBkcISSiOpY1DdJyQU1QcT8bJGfKUIgkEdxLXqjFEyEphZkigQJurVa4lL6EgF0QUO7Zw27TiNcrTwoaRFZ5tY8kiHEQgvBK6W82ZZlwZG0ezXL7R2opHYMw3zrteW4yfT3Gw7AAnz__54hu03ey2W1HrsfN8gXZSjtY00-8SFRezZXIF6GOhrtPd9Q1Gv9Wz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+discrete+Sturm%E2%80%93Liouville+problems&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=Rodriguez%2C+Jes%C3%BAs&rft.date=2005-08-01&rft.pub=Elsevier+Inc&rft.issn=0022-247X&rft.eissn=1096-0813&rft.volume=308&rft.issue=1&rft.spage=380&rft.epage=391&rft_id=info:doi/10.1016%2Fj.jmaa.2005.01.032&rft.externalDocID=S0022247X05000521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon