Nonlinear discrete Sturm–Liouville problems
In this paper we study nonlinear boundary value problems of the form Δ [ p ( t − 1 ) Δ y ( t − 1 ) ] + q ( t ) y ( t ) + λ y ( t ) = f ( y ( t ) ) ; t = a + 1 , … , b + 1 , subject to a 11 y ( a ) + a 12 Δ y ( a ) = 0 and a 21 y ( b + 1 ) + a 22 Δ y ( b + 1 ) = 0 . The parameter λ is an eigenvalue o...
Saved in:
Published in | Journal of mathematical analysis and applications Vol. 308; no. 1; pp. 380 - 391 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
San Diego, CA
Elsevier Inc
01.08.2005
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper we study nonlinear boundary value problems of the form
Δ
[
p
(
t
−
1
)
Δ
y
(
t
−
1
)
]
+
q
(
t
)
y
(
t
)
+
λ
y
(
t
)
=
f
(
y
(
t
)
)
;
t
=
a
+
1
,
…
,
b
+
1
,
subject to
a
11
y
(
a
)
+
a
12
Δ
y
(
a
)
=
0
and
a
21
y
(
b
+
1
)
+
a
22
Δ
y
(
b
+
1
)
=
0
.
The parameter
λ is an eigenvalue of the associated linear problem; that is, there is a nontrivial function
u that satisfies the boundary conditions and also
Δ
[
p
(
t
−
1
)
Δ
u
(
t
−
1
)
]
+
q
(
t
)
u
(
t
)
+
λ
u
(
t
)
=
0
for
t in
{
a
+
1
,
a
+
2
,
…
,
b
+
1
}
.
We establish sufficient conditions for the solvability of such problems. In addition, in those cases where the nonlinearity is “small,” we provide a qualitative analysis of the relation between solutions of the nonlinear problem and eigenfunctions of the linear one. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2005.01.032 |