An integrated approach to assessing abiotic and biotic threats to post‐fire plant species recovery: Lessons from the 2019–2020 Australian fire season

Aim Existing abiotic and biotic threats to plant species (e.g., disease, drought, invasive species) affect their capacity to recover post‐fire. We use a new, globally applicable framework to assess the vulnerability of 26,062 Australian plant species to a suite of active threats after the 2019–2020...

Full description

Saved in:
Bibliographic Details
Published inGlobal ecology and biogeography Vol. 31; no. 10; pp. 2056 - 2069
Main Authors Gallagher, Rachael V., Allen, Stuart P., Mackenzie, Berin D. E., Keith, David A., Nolan, Rachael H., Rumpff, Libby, Gosper, Carl R., Pegg, Geoffrey, van Leeuwen, Stephen, Ooi, Mark K. J., Yates, Colin J., Merow, Cory, Williams, Richard J., Nikolopoulos, Efthymios I., Beaumont, Linda J., Auld, Tony D., Varner, Morgan
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.10.2022
Subjects
Online AccessGet full text
ISSN1466-822X
1466-8238
DOI10.1111/geb.13478

Cover

More Information
Summary:Aim Existing abiotic and biotic threats to plant species (e.g., disease, drought, invasive species) affect their capacity to recover post‐fire. We use a new, globally applicable framework to assess the vulnerability of 26,062 Australian plant species to a suite of active threats after the 2019–2020 fires. Location Australia. Time period 2019–2020. Major species studied Plants. Methods Spatial data for existing threats and information on species‐level susceptibility were combined with estimates of the extent of range burnt in southern Australia (> 22°S) to assign species against 10 criteria into vulnerability categories (high, medium, low, none, data deficient). We explore in detail results for three threats (drought, disease, feral animals), highlighting where impacts from multiple threats ranked high vulnerability may compound to reduce post‐fire recovery. Results Analysis of the full suite of 10 vulnerability criteria, which encompass a broad range of threats, revealed large numbers of species vulnerable to poor post‐fire recovery from one or more different hazards (high vulnerability: 1,243 species; medium vulnerability: 2,450 species). Collectively, 457 plant species that burnt extensively (> 50%) across their range are highly vulnerable to poor recovery due to exposure to pre‐fire drought conditions (235 species), disease (186 species), or feral animals (97 species). Of these 457 species, 61 are vulnerable to more than one of these three threats, highlighting how a suite of interacting hazards can impact plant recovery after fire. Main conclusions While fire can renew plant populations by stimulating recruitment and resetting competitive interactions, the presence of existing threats in post‐fire landscapes jeopardizes recovery. The simultaneous impact of multiple threats that impact recovery can create a suite of hazards that contribute to declines and, potentially, extinction. Our method for rapid post‐fire vulnerability assessment can be applied to large numbers of plant species or other biota in fire affected regions globally.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1466-822X
1466-8238
DOI:10.1111/geb.13478