Whole Genome Characterization of the High-Risk Clone ST383 Klebsiella pneumoniae with a Simultaneous Carriage of blaCTX-M-14 on IncL/M Plasmid and blaCTX-M-15 on Convergent IncHI1B/IncFIB Plasmid from Egypt
Recently, Egypt has witnessed the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae, which has posed a serious healthcare challenge. The accelerated dissemination of blaCTX-M genes among these MDR K. pneumoniae, particularly blaCTX-M-14 and blaCTX-M-15, have been noted. In this study, we...
Saved in:
Published in | Microorganisms (Basel) Vol. 10; no. 6; p. 1097 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
26.05.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Recently, Egypt has witnessed the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae, which has posed a serious healthcare challenge. The accelerated dissemination of blaCTX-M genes among these MDR K. pneumoniae, particularly blaCTX-M-14 and blaCTX-M-15, have been noted. In this study, we investigated the occurrence of blaCTX-M-IV among K. pneumoniae recovered from the laboratory of a major hospital in Alexandria. The 23 tested isolates showed an MDR phenotype and the blaCTX-M-IV gene was detected in ≈22% of the isolates. The transformation of plasmids harboring blaCTX-M-IV to chemically competent cells of Escherichia coli DH5α was successful in three out of five of the tested blaCTX-M-IV-positive isolates. Whole genome sequencing of K22 indicated that the isolate belonged to the high-risk clone ST383, showing a simultaneous carriage of blaCTX-M-14 on IncL/M plasmid, i.e., pEGY22_CTX-M-14, and blaCTX-M-15 on a hybrid IncHI1B/IncFIB plasmid, pEGY22_CTX-M-15. Alignment of both plasmids revealed high similarity with those originating in the UK, Germany, Australia, Russia, China, Saudi Arabia, and Morocco. pEGY22_CTX-M-15 was a mosaic plasmid that demonstrated convergence of MDR and virulence genes. The emergence of such a plasmid with enhanced genetic plasticity constitutes the perfect path for the evolution of K. pneumoniae isolates causing invasive untreatable infections especially in a country with a high burden of infectious diseases such as Egypt. Therefore there is an imperative need for countrywide surveillances to monitor the prevalence of these superbugs with limited therapeutic options. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2076-2607 2076-2607 |
DOI: | 10.3390/microorganisms10061097 |