Channel Engineering of Normally-OFF AlGaN/GaN MOS-HEMTs by Atomic Layer Etching and High- \kappa Dielectric

In this letter, normally-OFF AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors with a threshold voltage of 2.2 V have been achieved by an atomic layer etching technique. Combined with surface passivation by atomic layer deposition of composite HfSiO high-<inline-formula> &...

Full description

Saved in:
Bibliographic Details
Published inIEEE electron device letters Vol. 39; no. 9; pp. 1377 - 1380
Main Authors Hu, Qianlan, Li, Sichao, Li, Tiaoyang, Wang, Xin, Li, Xuefei, Wu, Yanqing
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this letter, normally-OFF AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors with a threshold voltage of 2.2 V have been achieved by an atomic layer etching technique. Combined with surface passivation by atomic layer deposition of composite HfSiO high-<inline-formula> <tex-math notation="LaTeX">\kappa </tex-math></inline-formula> gate dielectric, a well-controlled gate-recess process with minimized surface damage results in improved interface properties with a low interface trap density of <inline-formula> <tex-math notation="LaTeX">2.8\times 10^{11} </tex-math></inline-formula> eV −1 cm −2 and suppressed gate leakage current with a high current on/off ratio over 10 11 . A maximum current density of 518 mA/mm with an ON-resistance of 10.1 <inline-formula> <tex-math notation="LaTeX">\Omega \cdot \textsf {mm} </tex-math></inline-formula> and a high breakdown voltage of 1456 V at an OFF-state current density of <inline-formula> <tex-math notation="LaTeX">1~\mu \text{A} </tex-math></inline-formula>/mm are also achieved. In the meantime, the dynamic <inline-formula> <tex-math notation="LaTeX">{\text {R}}_{\mathrm {on}} </tex-math></inline-formula> is only 1.2 times the static <inline-formula> <tex-math notation="LaTeX">{\text {R}}_{\mathrm {on}} </tex-math></inline-formula> after OFF-state drain voltage stress of 120 V and 2.6 times after 300-V stress.
ISSN:0741-3106
1558-0563
DOI:10.1109/LED.2018.2856934