Performance of an Indium-sealed S-band RF Photoelectron Gun for Time-resolved Electron Diffraction Experiments
We have developed a one-and-half -cell S-band radio-frequency (RF) photoelectron gun (photogun) fed by a coaxial coupler. The RF photogun is dedicated to ultrafast-electron-diffraction experiments by generating electron bunches of 3-MeV energy and a-few-pC charge, which is not strict condition compa...
Saved in:
Published in | Journal of the Korean Physical Society Vol. 74; no. 1; pp. 24 - 29 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Physical Society
01.01.2019
Springer Nature B.V 한국물리학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0374-4884 1976-8524 |
DOI | 10.3938/jkps.74.24 |
Cover
Summary: | We have developed a one-and-half -cell S-band radio-frequency (RF) photoelectron gun (photogun) fed by a coaxial coupler. The RF photogun is dedicated to ultrafast-electron-diffraction experiments by generating electron bunches of 3-MeV energy and a-few-pC charge, which is not strict condition compared to those for X-ray free-electron lasers. Brazing of RF cavities is welldeveloped process for making RF guns or RF accelerators. Sometimes, however, a failure occurs in the brazing process, causing the entire electron gun or accelerating cavity to spoil. Axial-symmetric design of the RF photogun permits indium sealing for cavity cells, a photocathode plate, and a coupling RF part. We firstly report that the indium-sealed RF photogun successfully meets the required performance and long-term stability for ultrafast electron diffraction experiments. We have stably operated the RF photogun for more than three years with the electron beam conditions of ~ 3-MeV energy, up-to-10-pC charge, and a repetition rate of 50 Hz. The quantum efficiency of the copper photocathode had improved from 10
−6
to 10
−5
depending on vacuum condition from 10
−8
to 5 × 10
−10
Torr, respectively. Measured emittance and energy spread of the generated electron beam showed 0.3 mm-mrad and less than 0.25%, respectively, for a bunch charge of ~ 2 pC, which agree well with those obtained by ASTRA simulation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0374-4884 1976-8524 |
DOI: | 10.3938/jkps.74.24 |