Optical design of spectrally selective interlayers for perovskite/silicon heterojunction tandem solar cells
Monolithic perovskite/c-Si tandem solar cells have the potential to exceed the Shockley-Queisser limit for single junction solar cells. However, reflection losses at internal interfaces play a crucial role for the overall efficiency of the tandem devices. Significant reflection losses are caused by...
Saved in:
Published in | Optics express Vol. 26; no. 18; pp. A750 - A760 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
03.09.2018
|
Online Access | Get full text |
Cover
Loading…
Summary: | Monolithic perovskite/c-Si tandem solar cells have the potential to exceed the Shockley-Queisser limit for single junction solar cells. However, reflection losses at internal interfaces play a crucial role for the overall efficiency of the tandem devices. Significant reflection losses are caused by the charge selective contacts which have a significantly lower refractive index compared to the absorber materials. Here, we present an approach to overcome a significant part of these reflection losses by introducing a multilayer stack between the top and bottom cell which shows spectrally selective transmission/reflection behavior. The layer stack is designed and optimized by optical simulations using transfer matrix method and a genetic algorithm. The incident sun light is split into a direct part and an isotropic diffuse part. The tandem solar cell with interlayer shows an absolute improvement of short-circuit current density of 0.82 mA/cm
. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.26.00A750 |