Detection of genuine tripartite entanglement and steering in hybrid optomechanics

Multipartite quantum entanglement is a key resource for ensuring security in quantum network. We show that by using a unified parameter in terms of reduced noise variances one can determine different types of tripartite entanglement of a given state generated in a hybrid optomechanical system, where...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 23; no. 23; pp. 30104 - 30117
Main Authors Xiang, Y, Sun, F X, Wang, M, Gong, Q H, He, Q Y
Format Journal Article
LanguageEnglish
Published United States 16.11.2015
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multipartite quantum entanglement is a key resource for ensuring security in quantum network. We show that by using a unified parameter in terms of reduced noise variances one can determine different types of tripartite entanglement of a given state generated in a hybrid optomechanical system, where an atomic ensemble is located inside a single-mode cavity with a movable mirror, with different thresholds for each type. In particular, the special quantum states which allow both entanglement and steering genuinely shared among atom-light-mirror modes can be observed, even though there is no direct interaction between the mirror and the atomic ensemble. We further show the robustness against mechanical thermal noise and damping, the relaxation time of atomic ensemble, as well as the effect of gain factors involved in the criteria. Our analysis provides an experimentally achievable method to determine the type of tripartite quantum correlation in a way.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.23.030104