Statistical mechanics of polymers subject to a force

When a polymer molecule is subjected to a force (such as a tensile force) it responds and this response gives information about the thermodynamics and structural properties of the polymer. In recent years there have been a number of experimental developments, such as atomic force microscopy and opti...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. A, Mathematical and theoretical Vol. 49; no. 34; pp. 343001 - 343047
Main Authors Orlandini, E, Whittington, S G
Format Journal Article
LanguageEnglish
Published IOP Publishing 26.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:When a polymer molecule is subjected to a force (such as a tensile force) it responds and this response gives information about the thermodynamics and structural properties of the polymer. In recent years there have been a number of experimental developments, such as atomic force microscopy and optical tweezers, that allow individual polymer molecules to be pulled in various ways. This has resulted in a renewed theoretical interest in how polymers respond to applied forces. This review will focus on some particular aspects of this field. We shall be primarily interested in tensile forces and consider various scenarios, such as pulling an adsorbed polymer from a surface and pulling a polymer from one phase to another. In order to make theoretical progress one needs a model of the polymer and we shall focus on lattice models. Our emphasis will be on exactly solvable models such as Dyck and Motzkin paths, and on rigorous results for self-avoiding walk models and some relatives, though we shall also discuss scaling theories and some selected numerical results.
Bibliography:JPhysA-105704.R1
ISSN:1751-8113
1751-8121
DOI:10.1088/1751-8113/49/34/343001