Optical lattice generation using vertically embedded multimode-interference square-core polymer waveguides on a silicon chip

We demonstrate two-dimensional optical lattice generation at 1064nm wavelength using vertically embedded multimode-interference (MMI) square-core polymer waveguides on a silicon chip. We demonstrate tuning of the effective waveguide length by longitudinally offsetting the waveguide input end-face fr...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 26; no. 11; pp. 14752 - 14767
Main Authors Yao, Zhanshi, Poon, Andrew W
Format Journal Article
LanguageEnglish
Published United States 28.05.2018
Online AccessGet full text

Cover

Loading…
More Information
Summary:We demonstrate two-dimensional optical lattice generation at 1064nm wavelength using vertically embedded multimode-interference (MMI) square-core polymer waveguides on a silicon chip. We demonstrate tuning of the effective waveguide length by longitudinally offsetting the waveguide input end-face from the input beam waist. Our measurement results of the waveguides with different cross-sectional dimensions at different effective waveguide lengths exhibit lattice patterns spanning from 4 × 4 to 10 × 10 arrays at the waveguide output end-face. Our theoretical analysis reveals that the offset causes additional mode-dependent phase changes. Our numerical modeling results using the three-dimensional beam-propagation method are consistent with our experimental results and theory.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.26.014752