Multiple surface expansion method for design of freeform imaging systems

The relative aperture size and the field-of-view (FOV) are two significant parameters for optical imaging systems. However, it is difficult to improve relative aperture size and FOV simultaneously. In this paper, a freeform design method is proposed that is particularly effective for high performanc...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 26; no. 3; pp. 2983 - 2994
Main Authors Tang, Ruirui, Zhang, Benqi, Jin, Guofan, Zhu, Jun
Format Journal Article
LanguageEnglish
Published United States 05.02.2018
Online AccessGet full text

Cover

Loading…
More Information
Summary:The relative aperture size and the field-of-view (FOV) are two significant parameters for optical imaging systems. However, it is difficult to improve relative aperture size and FOV simultaneously. In this paper, a freeform design method is proposed that is particularly effective for high performance systems. In this step-by-step method, the FOV is enlarged from a small initial value in equal-length steps until it reaches the full FOV; in each step, part of the area of one system surface is constructed. A freeform off-axis three-mirror imaging system with large relative aperture size and a wide FOV is designed as an example. The system operates at F/2.5 with 150 mm effective focal length and a 60° × 1° FOV. The average root-mean-square wavefront error of the system is 0.089λ (working wavelength λ = 530.5 nm).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.26.002983