Cyclostationarity-based joint monitoring of symbol-rate, frequency offset, CD and OSNR for Nyquist WDM superchannels

Software-defined transceivers can be reconfigured based on demand and existing channel impairments, and as such, monitoring of both signal and channel parameters is necessary. We demonstrate a novel joint estimation method suitable for spectrally efficient Nyquist wavelength-division multiplexing (W...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 23; no. 20; pp. 25762 - 25772
Main Authors Ionescu, Maria, Sato, Masaki, Thomsen, Benn
Format Journal Article
LanguageEnglish
Published United States 05.10.2015
Online AccessGet full text

Cover

Loading…
More Information
Summary:Software-defined transceivers can be reconfigured based on demand and existing channel impairments, and as such, monitoring of both signal and channel parameters is necessary. We demonstrate a novel joint estimation method suitable for spectrally efficient Nyquist wavelength-division multiplexing (WDM), based on the cyclostationary property of linearly modulated signals, exploited both in the frequency and time domains. Using a Nyquist superchannel composed of three 10 GBaud channels, we experimentally demonstrate the simultaneous monitoring of symbol-rate with 100% accuracy, roll-off, frequency offset (FO), chromatic dispersion (CD) and optical signal-to-noise ratio (OSNR) with root-mean-square errors (RMSE) of 20%, 4 MHz, 200 ps/nm and 1.5 dB respectively, when the roll-off factor is larger than 0.06 for DP-QPSK and 0.3 for DP-16QAM.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.23.025762