Cyclostationarity-based joint monitoring of symbol-rate, frequency offset, CD and OSNR for Nyquist WDM superchannels
Software-defined transceivers can be reconfigured based on demand and existing channel impairments, and as such, monitoring of both signal and channel parameters is necessary. We demonstrate a novel joint estimation method suitable for spectrally efficient Nyquist wavelength-division multiplexing (W...
Saved in:
Published in | Optics express Vol. 23; no. 20; pp. 25762 - 25772 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
05.10.2015
|
Online Access | Get full text |
Cover
Loading…
Summary: | Software-defined transceivers can be reconfigured based on demand and existing channel impairments, and as such, monitoring of both signal and channel parameters is necessary. We demonstrate a novel joint estimation method suitable for spectrally efficient Nyquist wavelength-division multiplexing (WDM), based on the cyclostationary property of linearly modulated signals, exploited both in the frequency and time domains. Using a Nyquist superchannel composed of three 10 GBaud channels, we experimentally demonstrate the simultaneous monitoring of symbol-rate with 100% accuracy, roll-off, frequency offset (FO), chromatic dispersion (CD) and optical signal-to-noise ratio (OSNR) with root-mean-square errors (RMSE) of 20%, 4 MHz, 200 ps/nm and 1.5 dB respectively, when the roll-off factor is larger than 0.06 for DP-QPSK and 0.3 for DP-16QAM. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.23.025762 |