High-power femtosecond cylindrical vector beam optical parametric oscillator

We report on high-power femtosecond cylindrical vector beam (CVB) generation from a Gaussian-pumped optical parametric oscillator (OPO). By introducing a half waveplate and a vortex half-wave plate of m = 1 to realize intracavity polarization modulation to the resonant Gaussian signal, the OPO could...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 27; no. 23; pp. 33080 - 33089
Main Authors Zhao, Jun, Fan, Jintao, Liao, Ruoyu, Xiao, Na, Hu, Minglie
Format Journal Article
LanguageEnglish
Published United States 11.11.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:We report on high-power femtosecond cylindrical vector beam (CVB) generation from a Gaussian-pumped optical parametric oscillator (OPO). By introducing a half waveplate and a vortex half-wave plate of m = 1 to realize intracavity polarization modulation to the resonant Gaussian signal, the OPO could deliver broadband signal beam in CVB profile, i.e., radially and azimuthally polarized beam profile. The central wavelength of the generated CVB signals can be tuned continuously from 1405 to 1601 nm, while the corresponding pulse durations are all around 150 fs. A maximum average output power of 614 mW at 1505 nm is obtained. Moreover, our OPO cavity design can be extended to generate high order CVB by simply changing the vortex half-wave plate with different orders. Such a high-power CVB OPO configuration has the advantages of flexible control and wide tuning range, making it a practical tool for applications in super-resolution imaging, optical communication and quantum correlations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.033080