An implementation method based on ERS imaging mode for sun sensor with 1 kHz update rate and 1″ precision level

Stringent attitude determination accuracy through a high bandwidth is required for the development of the advanced space technologies, such as earth observation and laser communication. In this work, we presented a novel proposal for a digital sun sensor with high accuracy, large Field of View (FOV)...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 21; no. 26; pp. 32524 - 32533
Main Authors Wei, Minsong, Xing, Fei, You, Zheng
Format Journal Article
LanguageEnglish
Published United States 30.12.2013
Online AccessGet full text

Cover

Loading…
More Information
Summary:Stringent attitude determination accuracy through a high bandwidth is required for the development of the advanced space technologies, such as earth observation and laser communication. In this work, we presented a novel proposal for a digital sun sensor with high accuracy, large Field of View (FOV) and ultra-high data update rate. The Electronic Rolling Shutter (ERS) imaging mode of an APS CMOS detector was employed and an "amplifier factor" was introduced to improve the data update rate significantly. Based on the idea of the multiplexing detector, a novel mask integrated with two kinds of aperture patterns was also introduced to implement its distinctive performance of high precision and large FOV. Test results show that the ERS based sun sensor is capable of achieving the data update rate of 1 kHz and precision of 1.1″ (1σ) within a 105° × 105° FOV. The digital sun sensor can play an important role in precise attitude determination and provide a broader application for high accuracy satellites.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.21.032524