Mode instability thresholds for Tm-doped fiber amplifiers pumped at 790 nm
We use a detailed numerical model of stimulated thermal Rayleigh scattering to compute mode instability thresholds in Tm(3+)-doped fiber amplifiers. The fiber amplifies 2040 nm light using a 790 nm pump. The cross-relaxation process is strong, permitting power efficiencies of 60%. The predicted inst...
Saved in:
Published in | Optics express Vol. 24; no. 2; pp. 975 - 992 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
25.01.2016
|
Online Access | Get full text |
Cover
Loading…
Summary: | We use a detailed numerical model of stimulated thermal Rayleigh scattering to compute mode instability thresholds in Tm(3+)-doped fiber amplifiers. The fiber amplifies 2040 nm light using a 790 nm pump. The cross-relaxation process is strong, permitting power efficiencies of 60%. The predicted instability thresholds are compared with those in similar Yb(3+)-doped fiber amplifiers with 976 nm pump and 1060 nm signal, and are found to be higher, even though the heat load is much higher in Tm-doped amplifiers. The higher threshold in the Tm-doped fiber is attributed to its longer signal wavelength, and to stronger gain saturation, due in part to cross-relaxation heating. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.24.000975 |