Long distance crosstalk-supported transmission using homogeneous multicore fibers and SDM-MIMO demultiplexing
We propose and evaluate the use of spatial-division multiplexing (SDM) multiple input multiple output (MIMO) systems to support long distance transmission using single-mode homogeneous multicore fibers. We show that on a uniform link with per-span inter-core skew compensation, the required SDM-MIMO...
Saved in:
Published in | Optics express Vol. 26; no. 18; pp. 24044 - 24053 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
03.09.2018
|
Online Access | Get full text |
Cover
Loading…
Summary: | We propose and evaluate the use of spatial-division multiplexing (SDM) multiple input multiple output (MIMO) systems to support long distance transmission using single-mode homogeneous multicore fibers. We show that on a uniform link with per-span inter-core skew compensation, the required SDM-MIMO memory length corresponds to the largest inter-core skew per span on the link. Furthermore, we show that with inter-core skew compensation, the required memory length of the SDM-MIMO is nearly constant with the transmission distance for accumulated crosstalk below -11 dB. We experimentally demonstrate the use of SDM-MIMO with a memory length of 20 ns on a long distance transmission link using 20 GBaud PDM-QPSK signals. We achieve a reach of 9780 km, which corresponds to a 9% improvement over the case without SDM-MIMO. We also show that the use of SDM-MIMO is applicable to the transmission of signals with higher modulation order, achieving transmission reach improvements of 14% for 20 GBaud PDM-16QAM and PDM-64QAM signals. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.26.024044 |