Comparison of two culture media on morphokinetics and ploidy status of sibling embryos

To investigate the effects of culture media with different lactate concentrations on early embryonic development, data collected from our patients undergoing preimplantation genetic testing (PGT) were assessed using the EmbryoScope™ time-lapse culturing system. After intracytoplasmic sperm injection...

Full description

Saved in:
Bibliographic Details
Published inZygote (Cambridge) Vol. 30; no. 3; pp. 410 - 415
Main Authors Urich, Michael, Ugur, Muhammet Rasit, Li, Fang, Shamma, F Nicholas, Hammoud, Ahmad, Cottrell, Hanh N, Dogan, Sule
Format Journal Article
LanguageEnglish
Published England Cambridge University Press 01.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To investigate the effects of culture media with different lactate concentrations on early embryonic development, data collected from our patients undergoing preimplantation genetic testing (PGT) were assessed using the EmbryoScope™ time-lapse culturing system. After intracytoplasmic sperm injection (ICSI), sibling oocytes were cultured in the same EmbryoScope (Vitrolife) slides including two different commercially available media. The patients with fewer than five mature oocytes were not included in the analyses. All embryos were hatched on day 3, and trophectoderm biopsies (n = 212) were performed accordingly. PGT for aneuploidy (PGT-A) on biopsied materials was carried out using next generation sequencing. Morphokinetic parameters, fertilization, irregular division, degeneration, blastulation, euploidy, and pregnancy rates of embryos cultured in LifeGlobal Global Total medium (LGGT) and Continuous Single Culture-NX Complete medium (CSCM-NXC) were compared. There were no differences observed in time to pronuclear fade, or in time spent as 2-cell (cc2) and 3-cell (s2), to 4-cell, 5-cell, morula and blastocyst stages (P > 0.05). Embryos reached the 2-cell (t2) and 3-cell (t3) stages significantly faster in LGGT (P < 0.05), whereas embryos grown in CSCM-NXC with lower lactate reached starting blastulation significantly sooner (P = 0.026). However, there were no statistical differences observed in fertilization, blastulation, degeneration, irregular division euploidy, and pregnancy rates between the two groups (P > 0.05). Even though pregnancy and fertilization rates did not indicate statistical differences, results are significant to provide better insight on potential roles of lactate in embryo development. These finding will advance the fundamental knowledge of human embryo development and assisted reproductive technologies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0967-1994
1469-8730
DOI:10.1017/S0967199421000927