Three-dimensional blood flow analysis in a wide-necked internal carotid artery-ophthalmic artery aneurysm

The aim of this study was to evaluate axial and secondary flow structures in a wide-necked internal carotid artery-ophthalmic artery aneurysm, one of the most common locations for endovascular coil placement. A clear acrylic aneurysm model was manufactured from a three-dimensional computerized tomog...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurosurgery Vol. 99; no. 3; p. 526
Main Authors Tateshima, Satoshi, Viñuela, Fernando, Villablanca, J Pablo, Murayama, Yuichi, Morino, Taku, Nomura, Kiyoe, Tanishita, Kazuo
Format Journal Article
LanguageEnglish
Published United States 01.09.2003
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:The aim of this study was to evaluate axial and secondary flow structures in a wide-necked internal carotid artery-ophthalmic artery aneurysm, one of the most common locations for endovascular coil placement. A clear acrylic aneurysm model was manufactured from a three-dimensional computerized tomography angiogram. Intraaneurysm blood flow analysis was conducted using an acrylic aneurysm model together with laser Doppler velocimetry and particle imaging velocimetry. The maximal axial blood flow velocities in the inflow and outflow zones at the aneurysm orifice were noted at the peak systolic phase, measuring 46.8 and 24.9% of that in the parent artery, respectively. The mean size of the inflow zone during one cardiac cycle was 44.3 +/- 9.8% (range 35.6-58.7%) the size of the axial section at the aneurysm orifice. In the lower and upper planes of the aneurysm dome, the mean size of inward and outward flow areas were 43.3 +/- 6.7% and 43.8 +/- 6.8% the size of the axial cross-sectional plane, respectively. The axial flow velocity structures were dynamically altered throughout the cardiac cycle, particularly at the aneurysm orifice. The fastest secondary flow at the opening was also noted at the peak systolic and early diastolic phases. Axial blood flow velocity was slower in the upper axial plane of the aneurysm dome than in the lower one. Conversely, the secondary flow component was faster in the upper plane. The side-wall aneurysm in this study did not demonstrate a simple flow pattern as was previously seen in ideally shaped experimental aneurysms in vitro and in vivo. The flow patterns of inflow and outflow zones were very difficult to predict based on the limited flow information provided on standard digital subtraction angiography, even in an aneurysm with a relatively simple dome shape.
ISSN:0022-3085
DOI:10.3171/jns.2003.99.3.0526