Quaternary Amine-Functionalized Reed Straw Bioadsorbent: Synergistic Phosphate Recovery and Sustainable Nutrient Recycling in Circular Economy Systems
The scarcity of phosphorus resources and the excessive accumulation of phosphates in aquatic environments pose significant threats to ecological systems and human health, while traditional treatment methods often fail to achieve effective resource recovery and reuse. This study aims to develop an ef...
Saved in:
Published in | Sustainability Vol. 17; no. 12; p. 5301 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The scarcity of phosphorus resources and the excessive accumulation of phosphates in aquatic environments pose significant threats to ecological systems and human health, while traditional treatment methods often fail to achieve effective resource recovery and reuse. This study aims to develop an efficient method for phosphate removal and resource recycling through the modification of reed straw (MRS) by introducing amine groups. Key operational parameters such as packed bed height, flow velocity, and initial solute concentration were systematically investigated to optimize MRS’s adsorption efficiency. Experimental results demonstrated that under optimized conditions, MRS achieved a maximum phosphate adsorption capacity of 8.337 mg/g and maintained over 80% efficiency after nine adsorption–desorption cycles. Utilizing the desorbed solution as a nutrient solution significantly enhanced maize seedling growth, increasing stem height by 23.8%, fresh weight by 51.3%, and phosphorus content by 80.7%. These findings highlight MRS’s potential, not only as an effective phosphate adsorbent, but also as a means of successful phosphorus resource recovery and recycling, indicating promising applications in environmental remediation and resource management. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su17125301 |