Planning Dynamically Feasible Trajectories for Quadrotors Using Safe Flight Corridors in 3-D Complex Environments
There is extensive literature on using convex optimization to derive piece-wise polynomial trajectories for controlling differential flat systems with applications to three-dimensional flight for Micro Aerial Vehicles. In this work, we propose a method to formulate trajectory generation as a quadrat...
Saved in:
Published in | IEEE robotics and automation letters Vol. 2; no. 3; pp. 1688 - 1695 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.07.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2377-3766 2377-3766 |
DOI | 10.1109/LRA.2017.2663526 |
Cover
Loading…
Abstract | There is extensive literature on using convex optimization to derive piece-wise polynomial trajectories for controlling differential flat systems with applications to three-dimensional flight for Micro Aerial Vehicles. In this work, we propose a method to formulate trajectory generation as a quadratic program (QP) using the concept of a Safe Flight Corridor (SFC). The SFC is a collection of convex overlapping polyhedra that models free space and provides a connected path from the robot to the goal position. We derive an efficient convex decomposition method that builds the SFC from a piece-wise linear skeleton obtained using a fast graph search technique. The SFC provides a set of linear inequality constraints in the QP allowing real-time motion planning. Because the range and field of view of the robot's sensors are limited, we develop a framework of Receding Horizon Planning , which plans trajectories within a finite footprint in the local map, continuously updating the trajectory through a re-planning process. The re-planning process takes between 50 to 300 ms for a large and cluttered map. We show the feasibility of our approach, its completeness and performance, with applications to high-speed flight in both simulated and physical experiments using quadrotors. |
---|---|
AbstractList | There is extensive literature on using convex optimization to derive piece-wise polynomial trajectories for controlling differential flat systems with applications to three-dimensional flight for Micro Aerial Vehicles. In this work, we propose a method to formulate trajectory generation as a quadratic program (QP) using the concept of a Safe Flight Corridor (SFC). The SFC is a collection of convex overlapping polyhedra that models free space and provides a connected path from the robot to the goal position. We derive an efficient convex decomposition method that builds the SFC from a piece-wise linear skeleton obtained using a fast graph search technique. The SFC provides a set of linear inequality constraints in the QP allowing real-time motion planning. Because the range and field of view of the robot's sensors are limited, we develop a framework of Receding Horizon Planning , which plans trajectories within a finite footprint in the local map, continuously updating the trajectory through a re-planning process. The re-planning process takes between 50 to 300 ms for a large and cluttered map. We show the feasibility of our approach, its completeness and performance, with applications to high-speed flight in both simulated and physical experiments using quadrotors. |
Author | Mohta, Kartik Liu, Sikang Taylor, Camillo J. Kumar, Vijay Sun, Ke Watterson, Michael Bhattacharya, Subhrajit |
Author_xml | – sequence: 1 givenname: Sikang surname: Liu fullname: Liu, Sikang email: sikang@seas.upenn.edu organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA – sequence: 2 givenname: Michael surname: Watterson fullname: Watterson, Michael email: wami@seas.upenn.edu organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA – sequence: 3 givenname: Kartik surname: Mohta fullname: Mohta, Kartik email: kmohta@seas.upenn.edu organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA – sequence: 4 givenname: Ke surname: Sun fullname: Sun, Ke email: sunke@seas.upenn.edu organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA – sequence: 5 givenname: Subhrajit surname: Bhattacharya fullname: Bhattacharya, Subhrajit email: subhrabh@math.upenn.edu organization: Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA – sequence: 6 givenname: Camillo J. surname: Taylor fullname: Taylor, Camillo J. email: cjtaylor@cis.upenn.edu organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA – sequence: 7 givenname: Vijay surname: Kumar fullname: Kumar, Vijay email: kumar@cis.upenn.edu organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA |
BookMark | eNp9kE1PAyEURYmpibV2b-KGPzCVgQGGZdMPNWniV7ueUAYqDYUKo7H_3pm0McaFq_dy7ztvcS5BzwevAbjO0SjPkbhdvIxHGOV8hBkjFLMz0MeE84xwxnq_9gswTGmLEMop5kTQPnh_ctJ76zdwevByZ5V07gDnWia7dhouo9xq1YRodYImRPj8IesY2iDBVeqwV2k0nDu7eWvgJMRo666zHpJs2ga7vdNfcOY_bQx-p32TrsC5kS7p4WkOwGo-W07us8Xj3cNkvMgUwaLJKOJKIYRpTZES1GAqC00KVNNScMFpwQXDgq6xYUyQtTJlzhgnZUEFpqZmZADY8a-KIaWoTaVsIxsbfBOldVWOqs5d1bqrOnfVyV0Loj_gPtqdjIf_kJsjYrXWP-e8JEIQRL4BDFl7fQ |
CODEN | IRALC6 |
CitedBy_id | crossref_primary_10_1109_TIE_2023_3285995 crossref_primary_10_1002_rob_21842 crossref_primary_10_1109_TRO_2022_3211131 crossref_primary_10_1109_TITS_2024_3361494 crossref_primary_10_1109_LRA_2024_3431870 crossref_primary_10_1108_RIA_10_2023_0151 crossref_primary_10_3390_aerospace10080705 crossref_primary_10_1007_s11768_019_8201_y crossref_primary_10_1109_LRA_2024_3444715 crossref_primary_10_1177_01423312231154318 crossref_primary_10_1109_LRA_2024_3486235 crossref_primary_10_1109_TIE_2023_3245180 crossref_primary_10_1109_TITS_2020_3041075 crossref_primary_10_1145_3658181 crossref_primary_10_1186_s40638_017_0079_x crossref_primary_10_3390_e24050653 crossref_primary_10_1108_IR_05_2024_0224 crossref_primary_10_1109_LRA_2022_3231827 crossref_primary_10_1109_TITS_2023_3328245 crossref_primary_10_1109_LRA_2024_3455854 crossref_primary_10_1109_TITS_2023_3285568 crossref_primary_10_3390_robotics14010003 crossref_primary_10_1109_LRA_2022_3231832 crossref_primary_10_1109_TMECH_2023_3289180 crossref_primary_10_1080_01691864_2021_1938671 crossref_primary_10_3390_electronics12112358 crossref_primary_10_1016_j_isatra_2022_11_017 crossref_primary_10_1109_LRA_2025_3544519 crossref_primary_10_1109_TVT_2024_3433606 crossref_primary_10_1109_TIV_2023_3280898 crossref_primary_10_1109_LRA_2023_3263376 crossref_primary_10_1109_TIV_2024_3352613 crossref_primary_10_3389_fpls_2024_1403385 crossref_primary_10_1109_TRO_2022_3141876 crossref_primary_10_1109_LRA_2020_3003871 crossref_primary_10_3390_app112411777 crossref_primary_10_4218_etrij_2020_0085 crossref_primary_10_1109_TCST_2022_3216989 crossref_primary_10_1109_ACCESS_2020_3037171 crossref_primary_10_1109_TRO_2022_3160022 crossref_primary_10_1109_TRO_2020_2993215 crossref_primary_10_1109_LRA_2021_3067298 crossref_primary_10_1109_TRO_2022_3187296 crossref_primary_10_1109_LRA_2024_3357399 crossref_primary_10_1109_TRO_2019_2922472 crossref_primary_10_1007_s10846_022_01676_3 crossref_primary_10_1109_LRA_2023_3308490 crossref_primary_10_1109_TRO_2019_2926390 crossref_primary_10_1109_TRO_2023_3279903 crossref_primary_10_3390_drones9030194 crossref_primary_10_1109_TIE_2023_3239775 crossref_primary_10_1109_TRO_2021_3076454 crossref_primary_10_1177_0278364919891775 crossref_primary_10_1109_TRO_2024_3429193 crossref_primary_10_1007_s11432_020_3056_5 crossref_primary_10_1109_LRA_2020_3047798 crossref_primary_10_1109_TITS_2024_3493060 crossref_primary_10_1109_LRA_2022_3196777 crossref_primary_10_1631_FITEE_1800719 crossref_primary_10_3390_s23167206 crossref_primary_10_1108_AEAT_02_2022_0059 crossref_primary_10_1016_j_ifacol_2022_09_034 crossref_primary_10_1177_02783649241238766 crossref_primary_10_1109_LCSYS_2019_2922414 crossref_primary_10_1007_s11431_022_2264_5 crossref_primary_10_1109_LRA_2022_3204367 crossref_primary_10_1109_TRO_2021_3100142 crossref_primary_10_3390_jmse11040702 crossref_primary_10_1007_s10846_021_01526_8 crossref_primary_10_2139_ssrn_4675561 crossref_primary_10_1109_ACCESS_2021_3098676 crossref_primary_10_1109_TETC_2020_3000352 crossref_primary_10_1109_LRA_2020_3044834 crossref_primary_10_1109_LRA_2024_3396109 crossref_primary_10_1007_s10514_021_10029_2 crossref_primary_10_1109_LRA_2022_3142744 crossref_primary_10_1109_LRA_2023_3311358 crossref_primary_10_1109_TRO_2024_3509015 crossref_primary_10_1109_LCSYS_2021_3088406 crossref_primary_10_1109_TASE_2024_3409058 crossref_primary_10_1016_j_oceaneng_2023_114156 crossref_primary_10_2514_1_G007218 crossref_primary_10_1109_LRA_2023_3268584 crossref_primary_10_1109_LRA_2021_3110316 crossref_primary_10_1177_02783649231225977 crossref_primary_10_1109_LRA_2022_3159848 crossref_primary_10_1007_s10846_020_01192_2 crossref_primary_10_1016_j_buildenv_2022_109266 crossref_primary_10_3103_S0278641921040075 crossref_primary_10_1142_S2301385021500151 crossref_primary_10_1016_j_ifacol_2020_12_1554 crossref_primary_10_1109_LRA_2025_3541458 crossref_primary_10_1108_AEAT_04_2022_0106 crossref_primary_10_1016_j_robot_2023_104565 crossref_primary_10_2514_1_I010956 crossref_primary_10_1016_j_ast_2023_108335 crossref_primary_10_1109_TCST_2021_3135895 crossref_primary_10_1177_02783649231210012 crossref_primary_10_1109_TIM_2024_3470976 crossref_primary_10_1109_LRA_2021_3098811 crossref_primary_10_1142_S230138502450033X crossref_primary_10_1109_ACCESS_2019_2926782 crossref_primary_10_3390_app12094420 crossref_primary_10_1016_j_adhoc_2024_103519 crossref_primary_10_1109_TIE_2021_3114744 crossref_primary_10_1016_j_ast_2021_107052 crossref_primary_10_1007_s10483_024_3103_8 crossref_primary_10_1109_TRO_2021_3080235 crossref_primary_10_1007_s10514_023_10104_w crossref_primary_10_1007_s10846_022_01708_y crossref_primary_10_1177_02783649231207655 crossref_primary_10_1109_TRO_2021_3071527 crossref_primary_10_3390_electronics10070868 crossref_primary_10_1038_s41598_024_51822_0 crossref_primary_10_1007_s10846_022_01662_9 crossref_primary_10_1016_j_trc_2024_104986 crossref_primary_10_1109_LRA_2020_2970665 crossref_primary_10_1126_scirobotics_ado6187 crossref_primary_10_1109_LRA_2019_2931199 crossref_primary_10_1007_s12555_022_0742_z crossref_primary_10_1109_LRA_2019_2927938 crossref_primary_10_3390_drones8060254 crossref_primary_10_1109_LRA_2022_3191786 crossref_primary_10_3390_robotics12050134 crossref_primary_10_1109_TIE_2023_3270541 crossref_primary_10_1109_TITS_2024_3432920 crossref_primary_10_1109_TMECH_2021_3060511 crossref_primary_10_1109_TIV_2021_3077702 crossref_primary_10_1109_LRA_2024_3475879 crossref_primary_10_1109_LRA_2023_3248377 crossref_primary_10_1016_j_jksuci_2023_101844 crossref_primary_10_3390_electronics12081841 crossref_primary_10_1109_LRA_2022_3230593 crossref_primary_10_1109_LRA_2024_3401127 crossref_primary_10_1109_LRA_2024_3448135 crossref_primary_10_1002_rob_21774 crossref_primary_10_1186_s10033_024_01014_8 crossref_primary_10_1016_j_conengprac_2024_106138 crossref_primary_10_1109_LRA_2021_3113976 crossref_primary_10_1177_01423312231155953 crossref_primary_10_1109_LRA_2018_2795654 crossref_primary_10_1109_OJITS_2023_3340174 crossref_primary_10_1146_annurev_control_060117_105149 crossref_primary_10_1109_ACCESS_2020_3025248 crossref_primary_10_1109_LRA_2021_3101877 crossref_primary_10_3390_machines10100931 crossref_primary_10_1177_0954410019867802 crossref_primary_10_1109_LRA_2023_3273399 crossref_primary_10_3390_drones7090588 crossref_primary_10_1007_s10846_022_01773_3 crossref_primary_10_3390_s21186223 crossref_primary_10_1016_j_arcontrol_2021_10_008 crossref_primary_10_3390_rs15215237 crossref_primary_10_1109_LRA_2023_3314350 crossref_primary_10_1109_TCNS_2022_3203936 crossref_primary_10_1177_02783649231169803 crossref_primary_10_1109_LRA_2021_3062332 crossref_primary_10_3390_app11167687 crossref_primary_10_1371_journal_pone_0311179 crossref_primary_10_3390_rs13050972 crossref_primary_10_1002_rob_21993 crossref_primary_10_1002_rob_21997 crossref_primary_10_1016_j_ast_2022_107800 crossref_primary_10_1049_iet_csr_2020_0004 crossref_primary_10_1109_TMECH_2024_3393144 crossref_primary_10_1016_j_arcontrol_2021_10_013 crossref_primary_10_1016_j_ifacol_2020_12_2399 crossref_primary_10_3390_s24175672 crossref_primary_10_1016_j_geits_2024_100205 crossref_primary_10_1109_LRA_2018_2878604 crossref_primary_10_3390_drones7020122 crossref_primary_10_1016_j_mechatronics_2023_103094 crossref_primary_10_1109_LRA_2022_3191934 crossref_primary_10_1109_TRO_2024_3454415 crossref_primary_10_1109_LRA_2024_3360809 crossref_primary_10_3390_app13063435 crossref_primary_10_1109_TIE_2020_3008378 crossref_primary_10_1177_09544100241233323 crossref_primary_10_1109_TASE_2023_3339637 crossref_primary_10_1007_s00607_025_01431_0 crossref_primary_10_1007_s10846_022_01625_0 crossref_primary_10_1109_LRA_2024_3387138 crossref_primary_10_1017_S0263574720000387 crossref_primary_10_1109_LRA_2023_3241812 crossref_primary_10_1007_s42835_021_00909_z crossref_primary_10_1088_1742_6596_1865_4_042002 crossref_primary_10_1109_TRO_2024_3386394 crossref_primary_10_1016_j_ymssp_2023_111050 crossref_primary_10_1177_17298806241229257 crossref_primary_10_1177_1729881420925292 crossref_primary_10_3390_ijgi10100631 crossref_primary_10_1002_rob_21732 crossref_primary_10_1007_s41315_021_00200_4 crossref_primary_10_1109_TRO_2025_3526102 crossref_primary_10_1109_TVT_2023_3330581 crossref_primary_10_1109_TETCI_2024_3424527 crossref_primary_10_1109_TITS_2024_3358380 crossref_primary_10_1109_TITS_2021_3109011 crossref_primary_10_1109_LRA_2022_3151157 crossref_primary_10_1109_TIE_2023_3335448 crossref_primary_10_1109_ACCESS_2024_3392577 crossref_primary_10_3390_a15060198 crossref_primary_10_1002_rob_22021 crossref_primary_10_1016_j_cja_2021_04_021 |
Cites_doi | 10.1109/SSRR.2016.7784290 10.1109/IROS.2015.7353826 10.1177/0278364911429977 10.1109/ICRA.2015.7138978 10.1007/978-3-319-28872-7_37 10.1109/ICRA.2012.6225235 10.1109/ICRA.2012.6225009 10.1007/s10514-012-9321-0 10.1007/978-3-319-16595-0_7 10.1109/ACC.2002.1024509 10.1109/ICRA.2011.5980409 10.1109/CDC.2010.5717652 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/LRA.2017.2663526 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2377-3766 |
EndPage | 1695 |
ExternalDocumentID | 10_1109_LRA_2017_2663526 7839930 |
Genre | orig-research |
GrantInformation_xml | – fundername: DARPA grantid: HR001151626/HR0011516850 funderid: 10.13039/100000185 – fundername: ARL grantid: W911NF-08-2-0004 funderid: 10.13039/100005423 – fundername: NASA Space Technology Research Fellowship – fundername: NSF grantid: IIS-1426840 funderid: 10.13039/100000001 |
GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c329t-507cc0025d50c95f25a4e340d58979754796295b2f6693bcf816673845925fd63 |
IEDL.DBID | RIE |
ISSN | 2377-3766 |
IngestDate | Tue Jul 01 03:53:52 EDT 2025 Thu Apr 24 22:59:40 EDT 2025 Wed Aug 27 02:30:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c329t-507cc0025d50c95f25a4e340d58979754796295b2f6693bcf816673845925fd63 |
PageCount | 8 |
ParticipantIDs | ieee_primary_7839930 crossref_citationtrail_10_1109_LRA_2017_2663526 crossref_primary_10_1109_LRA_2017_2663526 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-July 2017-7-00 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
PublicationDecade | 2010 |
PublicationTitle | IEEE robotics and automation letters |
PublicationTitleAbbrev | LRA |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 nieuwstadt (ref1) 1997 ref15 mourikis (ref20) 0 ref11 ref10 harabor (ref16) 0 deits (ref14) 2015 ref2 culligan (ref4) 2006 chen (ref7) 0 schouwenaars (ref19) 0; 40 ref18 ref8 mellinger (ref17) 2012 ref3 ref6 ref5 liu (ref9) 0 |
References_xml | – ident: ref8 doi: 10.1109/SSRR.2016.7784290 – ident: ref13 doi: 10.1109/IROS.2015.7353826 – year: 1997 ident: ref1 article-title: Real time trajectory generation for differentially flat systems – ident: ref12 doi: 10.1177/0278364911429977 – year: 0 ident: ref16 article-title: Online graph pruning for pathfinding on grid maps publication-title: Proc 25th AAAI Conf Artif Intell – ident: ref5 doi: 10.1109/ICRA.2015.7138978 – start-page: 1476 year: 0 ident: ref7 article-title: Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments publication-title: Proc 2016 IEEE Int Conf Robot Autom – start-page: 3565 year: 0 ident: ref20 article-title: A multi-state constraint Kalman filter for vision-aided inertial navigation publication-title: Proc 2007 IEEE Int Conf Robot Autom – ident: ref6 doi: 10.1007/978-3-319-28872-7_37 – volume: 40 year: 0 ident: ref19 article-title: Safe receding horizon path planning for autonomous vehicles publication-title: Proc Annu Allerton Conf Commun Control Comput – ident: ref11 doi: 10.1109/ICRA.2012.6225235 – ident: ref3 doi: 10.1109/ICRA.2012.6225009 – ident: ref10 doi: 10.1007/s10514-012-9321-0 – start-page: 1484 year: 0 ident: ref9 article-title: High speed navigation for quadrotors with limited onboard sensing publication-title: Proc 2016 IEEE Int Conf Robot Autom – start-page: 109 year: 2015 ident: ref14 article-title: Computing large convex regions of obstacle-free space through semidefinite programming publication-title: Algorithmic Foundations of Robotics XI doi: 10.1007/978-3-319-16595-0_7 – year: 2006 ident: ref4 article-title: Online trajectory planning for UAVs using mixed integer linear programming – ident: ref18 doi: 10.1109/ACC.2002.1024509 – ident: ref2 doi: 10.1109/ICRA.2011.5980409 – ident: ref15 doi: 10.1109/CDC.2010.5717652 – year: 2012 ident: ref17 article-title: Trajectory generation and control for quadrotors |
SSID | ssj0001527395 |
Score | 2.561892 |
Snippet | There is extensive literature on using convex optimization to derive piece-wise polynomial trajectories for controlling differential flat systems with... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1688 |
SubjectTerms | Aerial robotics autonomous vehicle navigation Collision avoidance Ellipsoids motion and path planning Navigation Planning Real-time systems Robots Trajectory |
Title | Planning Dynamically Feasible Trajectories for Quadrotors Using Safe Flight Corridors in 3-D Complex Environments |
URI | https://ieeexplore.ieee.org/document/7839930 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwHA7bTnrwNcX5GDl4EezWpUm7HMceDHGCj8FupU1-hWlZdWygHvzbza-PWUTEW2kTCHxJf898HyEXXVt3tAyRDE8pi4fasbrSYxZ0NDhCd5gGTOhPbt3xlF_PxKxCrjZ3YQAgbT6DFj6mtXydqDWmytpeF82pCdCrJnDL7mp951OQSUyKohJpy_bNfQ9bt7wWQ6uK7Akly1OSUkktyWiXTIo1ZA0kz631Kmypjx_0jP9d5B7ZyV1K2sv2wD6pwOKAbJeIBuvktdAmooNMgT6I43dq3D9zIGKgxmA9pdl7EzZT48XSu3WglwkK8dC0p4A-BBHQUYyRPO0ny-Vc47f5gjrWgOI_JYY3Oixdmjsk09HwsT-2crEFSzlMrizjFyqFHpAWtpIiYiLg4HBbC4Od9AT3pMukCFnkutIJVYQFR8_pciGZiLTrHJHaIlnAMaHS0yyIkMgs5ByYDoRnLIKMQGoBwIMGaRdA-CpnIkdBjNhPIxJb-gY6H6Hzc-ga5HIz4yVj4fhjbB1B2YzL8Tj5_fUp2cLJWQPuGamtlms4N27GKmyS6uRz2Ex32RceMNGn |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5jPqgP3qY4r3nwRbBblybt8jh2Yeo2UDfYW2mTU5iWVccG6q83p-3mEBHfSpuWwJf0O7d8h5Cruq1rWoYohqeUxUPtWHXpMQtqGhyha0wDBvT7A7c74ndjMS6Qm9VZGABIi8-ggpdpLl8naoGhsqpXRzo1DvqG4X0us9Na3xEV1BKTYpmLtGW199jA4i2vwpBXUT9hjXvWmqmkXNLZJf3lLLISkpfKYh5W1OcPgcb_TnOP7ORGJW1kq2CfFGB6QLbXpAZL5G3ZnYi2sh70QRx_UGMAmi0RAzWU9ZzG743jTI0dSx8WgZ4l2IqHplUF9CmIgHZi9OVpM5nNJhqfTabUsVoU_yoxvNP22rG5QzLqtIfNrpW3W7CUw-TcMpahUmgDaWErKSImAg4Ot7Uw6ElPcE-6TIqQRa4rnVBFmHL0nDoXkolIu84RKU6TKRwTKj3NggilzELOgelAeIYTZARSCwAelEl1CYSvci1ybIkR-6lPYkvfQOcjdH4OXZlcr954zXQ4_hhbQlBW43I8Tn6_fUk2u8N-z-_dDu5PyRZ-KCvHPSPF-WwB58bomIcX6Vr7AlGQ08Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Planning+Dynamically+Feasible+Trajectories+for+Quadrotors+Using+Safe+Flight+Corridors+in+3-D+Complex+Environments&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Liu%2C+Sikang&rft.au=Watterson%2C+Michael&rft.au=Mohta%2C+Kartik&rft.au=Sun%2C+Ke&rft.date=2017-07-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=2&rft.issue=3&rft.spage=1688&rft.epage=1695&rft_id=info:doi/10.1109%2FLRA.2017.2663526&rft.externalDocID=7839930 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |