Planning Dynamically Feasible Trajectories for Quadrotors Using Safe Flight Corridors in 3-D Complex Environments

There is extensive literature on using convex optimization to derive piece-wise polynomial trajectories for controlling differential flat systems with applications to three-dimensional flight for Micro Aerial Vehicles. In this work, we propose a method to formulate trajectory generation as a quadrat...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 2; no. 3; pp. 1688 - 1695
Main Authors Liu, Sikang, Watterson, Michael, Mohta, Kartik, Sun, Ke, Bhattacharya, Subhrajit, Taylor, Camillo J., Kumar, Vijay
Format Journal Article
LanguageEnglish
Published IEEE 01.07.2017
Subjects
Online AccessGet full text
ISSN2377-3766
2377-3766
DOI10.1109/LRA.2017.2663526

Cover

Loading…
Abstract There is extensive literature on using convex optimization to derive piece-wise polynomial trajectories for controlling differential flat systems with applications to three-dimensional flight for Micro Aerial Vehicles. In this work, we propose a method to formulate trajectory generation as a quadratic program (QP) using the concept of a Safe Flight Corridor (SFC). The SFC is a collection of convex overlapping polyhedra that models free space and provides a connected path from the robot to the goal position. We derive an efficient convex decomposition method that builds the SFC from a piece-wise linear skeleton obtained using a fast graph search technique. The SFC provides a set of linear inequality constraints in the QP allowing real-time motion planning. Because the range and field of view of the robot's sensors are limited, we develop a framework of Receding Horizon Planning , which plans trajectories within a finite footprint in the local map, continuously updating the trajectory through a re-planning process. The re-planning process takes between 50 to 300 ms for a large and cluttered map. We show the feasibility of our approach, its completeness and performance, with applications to high-speed flight in both simulated and physical experiments using quadrotors.
AbstractList There is extensive literature on using convex optimization to derive piece-wise polynomial trajectories for controlling differential flat systems with applications to three-dimensional flight for Micro Aerial Vehicles. In this work, we propose a method to formulate trajectory generation as a quadratic program (QP) using the concept of a Safe Flight Corridor (SFC). The SFC is a collection of convex overlapping polyhedra that models free space and provides a connected path from the robot to the goal position. We derive an efficient convex decomposition method that builds the SFC from a piece-wise linear skeleton obtained using a fast graph search technique. The SFC provides a set of linear inequality constraints in the QP allowing real-time motion planning. Because the range and field of view of the robot's sensors are limited, we develop a framework of Receding Horizon Planning , which plans trajectories within a finite footprint in the local map, continuously updating the trajectory through a re-planning process. The re-planning process takes between 50 to 300 ms for a large and cluttered map. We show the feasibility of our approach, its completeness and performance, with applications to high-speed flight in both simulated and physical experiments using quadrotors.
Author Mohta, Kartik
Liu, Sikang
Taylor, Camillo J.
Kumar, Vijay
Sun, Ke
Watterson, Michael
Bhattacharya, Subhrajit
Author_xml – sequence: 1
  givenname: Sikang
  surname: Liu
  fullname: Liu, Sikang
  email: sikang@seas.upenn.edu
  organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 2
  givenname: Michael
  surname: Watterson
  fullname: Watterson, Michael
  email: wami@seas.upenn.edu
  organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 3
  givenname: Kartik
  surname: Mohta
  fullname: Mohta, Kartik
  email: kmohta@seas.upenn.edu
  organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 4
  givenname: Ke
  surname: Sun
  fullname: Sun, Ke
  email: sunke@seas.upenn.edu
  organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 5
  givenname: Subhrajit
  surname: Bhattacharya
  fullname: Bhattacharya, Subhrajit
  email: subhrabh@math.upenn.edu
  organization: Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, USA
– sequence: 6
  givenname: Camillo J.
  surname: Taylor
  fullname: Taylor, Camillo J.
  email: cjtaylor@cis.upenn.edu
  organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 7
  givenname: Vijay
  surname: Kumar
  fullname: Kumar, Vijay
  email: kumar@cis.upenn.edu
  organization: GRASP Laboratory, University of Pennsylvania, Philadelphia, PA, USA
BookMark eNp9kE1PAyEURYmpibV2b-KGPzCVgQGGZdMPNWniV7ueUAYqDYUKo7H_3pm0McaFq_dy7ztvcS5BzwevAbjO0SjPkbhdvIxHGOV8hBkjFLMz0MeE84xwxnq_9gswTGmLEMop5kTQPnh_ctJ76zdwevByZ5V07gDnWia7dhouo9xq1YRodYImRPj8IesY2iDBVeqwV2k0nDu7eWvgJMRo666zHpJs2ga7vdNfcOY_bQx-p32TrsC5kS7p4WkOwGo-W07us8Xj3cNkvMgUwaLJKOJKIYRpTZES1GAqC00KVNNScMFpwQXDgq6xYUyQtTJlzhgnZUEFpqZmZADY8a-KIaWoTaVsIxsbfBOldVWOqs5d1bqrOnfVyV0Loj_gPtqdjIf_kJsjYrXWP-e8JEIQRL4BDFl7fQ
CODEN IRALC6
CitedBy_id crossref_primary_10_1109_TIE_2023_3285995
crossref_primary_10_1002_rob_21842
crossref_primary_10_1109_TRO_2022_3211131
crossref_primary_10_1109_TITS_2024_3361494
crossref_primary_10_1109_LRA_2024_3431870
crossref_primary_10_1108_RIA_10_2023_0151
crossref_primary_10_3390_aerospace10080705
crossref_primary_10_1007_s11768_019_8201_y
crossref_primary_10_1109_LRA_2024_3444715
crossref_primary_10_1177_01423312231154318
crossref_primary_10_1109_LRA_2024_3486235
crossref_primary_10_1109_TIE_2023_3245180
crossref_primary_10_1109_TITS_2020_3041075
crossref_primary_10_1145_3658181
crossref_primary_10_1186_s40638_017_0079_x
crossref_primary_10_3390_e24050653
crossref_primary_10_1108_IR_05_2024_0224
crossref_primary_10_1109_LRA_2022_3231827
crossref_primary_10_1109_TITS_2023_3328245
crossref_primary_10_1109_LRA_2024_3455854
crossref_primary_10_1109_TITS_2023_3285568
crossref_primary_10_3390_robotics14010003
crossref_primary_10_1109_LRA_2022_3231832
crossref_primary_10_1109_TMECH_2023_3289180
crossref_primary_10_1080_01691864_2021_1938671
crossref_primary_10_3390_electronics12112358
crossref_primary_10_1016_j_isatra_2022_11_017
crossref_primary_10_1109_LRA_2025_3544519
crossref_primary_10_1109_TVT_2024_3433606
crossref_primary_10_1109_TIV_2023_3280898
crossref_primary_10_1109_LRA_2023_3263376
crossref_primary_10_1109_TIV_2024_3352613
crossref_primary_10_3389_fpls_2024_1403385
crossref_primary_10_1109_TRO_2022_3141876
crossref_primary_10_1109_LRA_2020_3003871
crossref_primary_10_3390_app112411777
crossref_primary_10_4218_etrij_2020_0085
crossref_primary_10_1109_TCST_2022_3216989
crossref_primary_10_1109_ACCESS_2020_3037171
crossref_primary_10_1109_TRO_2022_3160022
crossref_primary_10_1109_TRO_2020_2993215
crossref_primary_10_1109_LRA_2021_3067298
crossref_primary_10_1109_TRO_2022_3187296
crossref_primary_10_1109_LRA_2024_3357399
crossref_primary_10_1109_TRO_2019_2922472
crossref_primary_10_1007_s10846_022_01676_3
crossref_primary_10_1109_LRA_2023_3308490
crossref_primary_10_1109_TRO_2019_2926390
crossref_primary_10_1109_TRO_2023_3279903
crossref_primary_10_3390_drones9030194
crossref_primary_10_1109_TIE_2023_3239775
crossref_primary_10_1109_TRO_2021_3076454
crossref_primary_10_1177_0278364919891775
crossref_primary_10_1109_TRO_2024_3429193
crossref_primary_10_1007_s11432_020_3056_5
crossref_primary_10_1109_LRA_2020_3047798
crossref_primary_10_1109_TITS_2024_3493060
crossref_primary_10_1109_LRA_2022_3196777
crossref_primary_10_1631_FITEE_1800719
crossref_primary_10_3390_s23167206
crossref_primary_10_1108_AEAT_02_2022_0059
crossref_primary_10_1016_j_ifacol_2022_09_034
crossref_primary_10_1177_02783649241238766
crossref_primary_10_1109_LCSYS_2019_2922414
crossref_primary_10_1007_s11431_022_2264_5
crossref_primary_10_1109_LRA_2022_3204367
crossref_primary_10_1109_TRO_2021_3100142
crossref_primary_10_3390_jmse11040702
crossref_primary_10_1007_s10846_021_01526_8
crossref_primary_10_2139_ssrn_4675561
crossref_primary_10_1109_ACCESS_2021_3098676
crossref_primary_10_1109_TETC_2020_3000352
crossref_primary_10_1109_LRA_2020_3044834
crossref_primary_10_1109_LRA_2024_3396109
crossref_primary_10_1007_s10514_021_10029_2
crossref_primary_10_1109_LRA_2022_3142744
crossref_primary_10_1109_LRA_2023_3311358
crossref_primary_10_1109_TRO_2024_3509015
crossref_primary_10_1109_LCSYS_2021_3088406
crossref_primary_10_1109_TASE_2024_3409058
crossref_primary_10_1016_j_oceaneng_2023_114156
crossref_primary_10_2514_1_G007218
crossref_primary_10_1109_LRA_2023_3268584
crossref_primary_10_1109_LRA_2021_3110316
crossref_primary_10_1177_02783649231225977
crossref_primary_10_1109_LRA_2022_3159848
crossref_primary_10_1007_s10846_020_01192_2
crossref_primary_10_1016_j_buildenv_2022_109266
crossref_primary_10_3103_S0278641921040075
crossref_primary_10_1142_S2301385021500151
crossref_primary_10_1016_j_ifacol_2020_12_1554
crossref_primary_10_1109_LRA_2025_3541458
crossref_primary_10_1108_AEAT_04_2022_0106
crossref_primary_10_1016_j_robot_2023_104565
crossref_primary_10_2514_1_I010956
crossref_primary_10_1016_j_ast_2023_108335
crossref_primary_10_1109_TCST_2021_3135895
crossref_primary_10_1177_02783649231210012
crossref_primary_10_1109_TIM_2024_3470976
crossref_primary_10_1109_LRA_2021_3098811
crossref_primary_10_1142_S230138502450033X
crossref_primary_10_1109_ACCESS_2019_2926782
crossref_primary_10_3390_app12094420
crossref_primary_10_1016_j_adhoc_2024_103519
crossref_primary_10_1109_TIE_2021_3114744
crossref_primary_10_1016_j_ast_2021_107052
crossref_primary_10_1007_s10483_024_3103_8
crossref_primary_10_1109_TRO_2021_3080235
crossref_primary_10_1007_s10514_023_10104_w
crossref_primary_10_1007_s10846_022_01708_y
crossref_primary_10_1177_02783649231207655
crossref_primary_10_1109_TRO_2021_3071527
crossref_primary_10_3390_electronics10070868
crossref_primary_10_1038_s41598_024_51822_0
crossref_primary_10_1007_s10846_022_01662_9
crossref_primary_10_1016_j_trc_2024_104986
crossref_primary_10_1109_LRA_2020_2970665
crossref_primary_10_1126_scirobotics_ado6187
crossref_primary_10_1109_LRA_2019_2931199
crossref_primary_10_1007_s12555_022_0742_z
crossref_primary_10_1109_LRA_2019_2927938
crossref_primary_10_3390_drones8060254
crossref_primary_10_1109_LRA_2022_3191786
crossref_primary_10_3390_robotics12050134
crossref_primary_10_1109_TIE_2023_3270541
crossref_primary_10_1109_TITS_2024_3432920
crossref_primary_10_1109_TMECH_2021_3060511
crossref_primary_10_1109_TIV_2021_3077702
crossref_primary_10_1109_LRA_2024_3475879
crossref_primary_10_1109_LRA_2023_3248377
crossref_primary_10_1016_j_jksuci_2023_101844
crossref_primary_10_3390_electronics12081841
crossref_primary_10_1109_LRA_2022_3230593
crossref_primary_10_1109_LRA_2024_3401127
crossref_primary_10_1109_LRA_2024_3448135
crossref_primary_10_1002_rob_21774
crossref_primary_10_1186_s10033_024_01014_8
crossref_primary_10_1016_j_conengprac_2024_106138
crossref_primary_10_1109_LRA_2021_3113976
crossref_primary_10_1177_01423312231155953
crossref_primary_10_1109_LRA_2018_2795654
crossref_primary_10_1109_OJITS_2023_3340174
crossref_primary_10_1146_annurev_control_060117_105149
crossref_primary_10_1109_ACCESS_2020_3025248
crossref_primary_10_1109_LRA_2021_3101877
crossref_primary_10_3390_machines10100931
crossref_primary_10_1177_0954410019867802
crossref_primary_10_1109_LRA_2023_3273399
crossref_primary_10_3390_drones7090588
crossref_primary_10_1007_s10846_022_01773_3
crossref_primary_10_3390_s21186223
crossref_primary_10_1016_j_arcontrol_2021_10_008
crossref_primary_10_3390_rs15215237
crossref_primary_10_1109_LRA_2023_3314350
crossref_primary_10_1109_TCNS_2022_3203936
crossref_primary_10_1177_02783649231169803
crossref_primary_10_1109_LRA_2021_3062332
crossref_primary_10_3390_app11167687
crossref_primary_10_1371_journal_pone_0311179
crossref_primary_10_3390_rs13050972
crossref_primary_10_1002_rob_21993
crossref_primary_10_1002_rob_21997
crossref_primary_10_1016_j_ast_2022_107800
crossref_primary_10_1049_iet_csr_2020_0004
crossref_primary_10_1109_TMECH_2024_3393144
crossref_primary_10_1016_j_arcontrol_2021_10_013
crossref_primary_10_1016_j_ifacol_2020_12_2399
crossref_primary_10_3390_s24175672
crossref_primary_10_1016_j_geits_2024_100205
crossref_primary_10_1109_LRA_2018_2878604
crossref_primary_10_3390_drones7020122
crossref_primary_10_1016_j_mechatronics_2023_103094
crossref_primary_10_1109_LRA_2022_3191934
crossref_primary_10_1109_TRO_2024_3454415
crossref_primary_10_1109_LRA_2024_3360809
crossref_primary_10_3390_app13063435
crossref_primary_10_1109_TIE_2020_3008378
crossref_primary_10_1177_09544100241233323
crossref_primary_10_1109_TASE_2023_3339637
crossref_primary_10_1007_s00607_025_01431_0
crossref_primary_10_1007_s10846_022_01625_0
crossref_primary_10_1109_LRA_2024_3387138
crossref_primary_10_1017_S0263574720000387
crossref_primary_10_1109_LRA_2023_3241812
crossref_primary_10_1007_s42835_021_00909_z
crossref_primary_10_1088_1742_6596_1865_4_042002
crossref_primary_10_1109_TRO_2024_3386394
crossref_primary_10_1016_j_ymssp_2023_111050
crossref_primary_10_1177_17298806241229257
crossref_primary_10_1177_1729881420925292
crossref_primary_10_3390_ijgi10100631
crossref_primary_10_1002_rob_21732
crossref_primary_10_1007_s41315_021_00200_4
crossref_primary_10_1109_TRO_2025_3526102
crossref_primary_10_1109_TVT_2023_3330581
crossref_primary_10_1109_TETCI_2024_3424527
crossref_primary_10_1109_TITS_2024_3358380
crossref_primary_10_1109_TITS_2021_3109011
crossref_primary_10_1109_LRA_2022_3151157
crossref_primary_10_1109_TIE_2023_3335448
crossref_primary_10_1109_ACCESS_2024_3392577
crossref_primary_10_3390_a15060198
crossref_primary_10_1002_rob_22021
crossref_primary_10_1016_j_cja_2021_04_021
Cites_doi 10.1109/SSRR.2016.7784290
10.1109/IROS.2015.7353826
10.1177/0278364911429977
10.1109/ICRA.2015.7138978
10.1007/978-3-319-28872-7_37
10.1109/ICRA.2012.6225235
10.1109/ICRA.2012.6225009
10.1007/s10514-012-9321-0
10.1007/978-3-319-16595-0_7
10.1109/ACC.2002.1024509
10.1109/ICRA.2011.5980409
10.1109/CDC.2010.5717652
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LRA.2017.2663526
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 1695
ExternalDocumentID 10_1109_LRA_2017_2663526
7839930
Genre orig-research
GrantInformation_xml – fundername: DARPA
  grantid: HR001151626/HR0011516850
  funderid: 10.13039/100000185
– fundername: ARL
  grantid: W911NF-08-2-0004
  funderid: 10.13039/100005423
– fundername: NASA Space Technology Research Fellowship
– fundername: NSF
  grantid: IIS-1426840
  funderid: 10.13039/100000001
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c329t-507cc0025d50c95f25a4e340d58979754796295b2f6693bcf816673845925fd63
IEDL.DBID RIE
ISSN 2377-3766
IngestDate Tue Jul 01 03:53:52 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Wed Aug 27 02:30:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-507cc0025d50c95f25a4e340d58979754796295b2f6693bcf816673845925fd63
PageCount 8
ParticipantIDs ieee_primary_7839930
crossref_citationtrail_10_1109_LRA_2017_2663526
crossref_primary_10_1109_LRA_2017_2663526
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-July
2017-7-00
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-July
PublicationDecade 2010
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
nieuwstadt (ref1) 1997
ref15
mourikis (ref20) 0
ref11
ref10
harabor (ref16) 0
deits (ref14) 2015
ref2
culligan (ref4) 2006
chen (ref7) 0
schouwenaars (ref19) 0; 40
ref18
ref8
mellinger (ref17) 2012
ref3
ref6
ref5
liu (ref9) 0
References_xml – ident: ref8
  doi: 10.1109/SSRR.2016.7784290
– ident: ref13
  doi: 10.1109/IROS.2015.7353826
– year: 1997
  ident: ref1
  article-title: Real time trajectory generation for differentially flat systems
– ident: ref12
  doi: 10.1177/0278364911429977
– year: 0
  ident: ref16
  article-title: Online graph pruning for pathfinding on grid maps
  publication-title: Proc 25th AAAI Conf Artif Intell
– ident: ref5
  doi: 10.1109/ICRA.2015.7138978
– start-page: 1476
  year: 0
  ident: ref7
  article-title: Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments
  publication-title: Proc 2016 IEEE Int Conf Robot Autom
– start-page: 3565
  year: 0
  ident: ref20
  article-title: A multi-state constraint Kalman filter for vision-aided inertial navigation
  publication-title: Proc 2007 IEEE Int Conf Robot Autom
– ident: ref6
  doi: 10.1007/978-3-319-28872-7_37
– volume: 40
  year: 0
  ident: ref19
  article-title: Safe receding horizon path planning for autonomous vehicles
  publication-title: Proc Annu Allerton Conf Commun Control Comput
– ident: ref11
  doi: 10.1109/ICRA.2012.6225235
– ident: ref3
  doi: 10.1109/ICRA.2012.6225009
– ident: ref10
  doi: 10.1007/s10514-012-9321-0
– start-page: 1484
  year: 0
  ident: ref9
  article-title: High speed navigation for quadrotors with limited onboard sensing
  publication-title: Proc 2016 IEEE Int Conf Robot Autom
– start-page: 109
  year: 2015
  ident: ref14
  article-title: Computing large convex regions of obstacle-free space through semidefinite programming
  publication-title: Algorithmic Foundations of Robotics XI
  doi: 10.1007/978-3-319-16595-0_7
– year: 2006
  ident: ref4
  article-title: Online trajectory planning for UAVs using mixed integer linear programming
– ident: ref18
  doi: 10.1109/ACC.2002.1024509
– ident: ref2
  doi: 10.1109/ICRA.2011.5980409
– ident: ref15
  doi: 10.1109/CDC.2010.5717652
– year: 2012
  ident: ref17
  article-title: Trajectory generation and control for quadrotors
SSID ssj0001527395
Score 2.561892
Snippet There is extensive literature on using convex optimization to derive piece-wise polynomial trajectories for controlling differential flat systems with...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1688
SubjectTerms Aerial robotics
autonomous vehicle navigation
Collision avoidance
Ellipsoids
motion and path planning
Navigation
Planning
Real-time systems
Robots
Trajectory
Title Planning Dynamically Feasible Trajectories for Quadrotors Using Safe Flight Corridors in 3-D Complex Environments
URI https://ieeexplore.ieee.org/document/7839930
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwHA7bTnrwNcX5GDl4EezWpUm7HMceDHGCj8FupU1-hWlZdWygHvzbza-PWUTEW2kTCHxJf898HyEXXVt3tAyRDE8pi4fasbrSYxZ0NDhCd5gGTOhPbt3xlF_PxKxCrjZ3YQAgbT6DFj6mtXydqDWmytpeF82pCdCrJnDL7mp951OQSUyKohJpy_bNfQ9bt7wWQ6uK7Akly1OSUkktyWiXTIo1ZA0kz631Kmypjx_0jP9d5B7ZyV1K2sv2wD6pwOKAbJeIBuvktdAmooNMgT6I43dq3D9zIGKgxmA9pdl7EzZT48XSu3WglwkK8dC0p4A-BBHQUYyRPO0ny-Vc47f5gjrWgOI_JYY3Oixdmjsk09HwsT-2crEFSzlMrizjFyqFHpAWtpIiYiLg4HBbC4Od9AT3pMukCFnkutIJVYQFR8_pciGZiLTrHJHaIlnAMaHS0yyIkMgs5ByYDoRnLIKMQGoBwIMGaRdA-CpnIkdBjNhPIxJb-gY6H6Hzc-ga5HIz4yVj4fhjbB1B2YzL8Tj5_fUp2cLJWQPuGamtlms4N27GKmyS6uRz2Ex32RceMNGn
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5jPqgP3qY4r3nwRbBblybt8jh2Yeo2UDfYW2mTU5iWVccG6q83p-3mEBHfSpuWwJf0O7d8h5Cruq1rWoYohqeUxUPtWHXpMQtqGhyha0wDBvT7A7c74ndjMS6Qm9VZGABIi8-ggpdpLl8naoGhsqpXRzo1DvqG4X0us9Na3xEV1BKTYpmLtGW199jA4i2vwpBXUT9hjXvWmqmkXNLZJf3lLLISkpfKYh5W1OcPgcb_TnOP7ORGJW1kq2CfFGB6QLbXpAZL5G3ZnYi2sh70QRx_UGMAmi0RAzWU9ZzG743jTI0dSx8WgZ4l2IqHplUF9CmIgHZi9OVpM5nNJhqfTabUsVoU_yoxvNP22rG5QzLqtIfNrpW3W7CUw-TcMpahUmgDaWErKSImAg4Ot7Uw6ElPcE-6TIqQRa4rnVBFmHL0nDoXkolIu84RKU6TKRwTKj3NggilzELOgelAeIYTZARSCwAelEl1CYSvci1ybIkR-6lPYkvfQOcjdH4OXZlcr954zXQ4_hhbQlBW43I8Tn6_fUk2u8N-z-_dDu5PyRZ-KCvHPSPF-WwB58bomIcX6Vr7AlGQ08Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Planning+Dynamically+Feasible+Trajectories+for+Quadrotors+Using+Safe+Flight+Corridors+in+3-D+Complex+Environments&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Liu%2C+Sikang&rft.au=Watterson%2C+Michael&rft.au=Mohta%2C+Kartik&rft.au=Sun%2C+Ke&rft.date=2017-07-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=2&rft.issue=3&rft.spage=1688&rft.epage=1695&rft_id=info:doi/10.1109%2FLRA.2017.2663526&rft.externalDocID=7839930
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon