An Intelligent Heuristic Algorithm for a Multi-Objective Optimization Model of Urban Rail Transit Operation Plans

Urban rail transit (URT) systems frequently face operational challenges arising from temporal and spatial imbalances in passenger demand, resulting in inefficiencies in train scheduling and resource utilization. To address these issues, this study proposes a multi-objective optimization model that j...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 17; no. 10; p. 4617
Main Authors Han, Weisong, Shi, Zhihan, Lv, Xiaodong, Zhang, Guangming
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Urban rail transit (URT) systems frequently face operational challenges arising from temporal and spatial imbalances in passenger demand, resulting in inefficiencies in train scheduling and resource utilization. To address these issues, this study proposes a multi-objective optimization model that jointly plans short-turn and full-length train services. The objectives of the model are to minimize total passenger waiting time and train mileage while improving passenger load distribution across the rail line, subject to practical constraints such as departure frequency limitations, rolling stock availability, and coverage of short-turn services. To efficiently solve this model, an improved Pelican Optimization Algorithm (POA) is developed, incorporating techniques such as Tent chaotic mapping, nonlinear weight adjustment, Cauchy mutation, and the sparrow alert mechanism, significantly enhancing convergence accuracy and computational efficiency. A real-world case study based on Nanjing Metro Line 1 demonstrates that the proposed framework substantially reduces average passenger waiting times and overall train mileage, achieving a more balanced distribution of passenger loads. In addition, the study reveals that flexible-ratio dispatching strategies, representing theoretically optimal solutions, outperform integer-ratio dispatching schemes that reflect real-world operational constraints. This finding underscores that investigating the practical feasibility and optimization potential of flexible-ratio scheduling strategies constitutes a valuable direction for future research. The outcomes of this study provide a scalable and intelligent decision-support framework for train scheduling in URT systems, effectively contributing to the sustainable and intelligent development of rail operations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2071-1050
2071-1050
DOI:10.3390/su17104617