Wideband multimode fiber with an optimized core size and fluorine-doped cladding for high-speed SWDM and CWDM transmission

We propose a novel multimode fiber (MMF) with a 30 μm-core and fluorine-doped cladding for both high-speed short wavelength division multiplexing (SWDM) and coarse wavelength division multiplexing (CWDM) transmission. By optimizing the core size, the mode field diameter (MFD) mismatch between the pr...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 27; no. 11; pp. 15433 - 15443
Main Authors Liu, Yinping, Ma, Lin, Xiao, Wufeng, Wang, Runhan, Xiong, Junjie, Luo, Jie, He, Zuyuan
Format Journal Article
LanguageEnglish
Published United States 27.05.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a novel multimode fiber (MMF) with a 30 μm-core and fluorine-doped cladding for both high-speed short wavelength division multiplexing (SWDM) and coarse wavelength division multiplexing (CWDM) transmission. By optimizing the core size, the mode field diameter (MFD) mismatch between the proposed fiber and both the standard single-mode fiber (SMF) and MMF is minimized, which enables the quasi-single mode operation in the CWDM window and a compromised coupling loss with standard MMFs and SMFs. By adopting a fluorine-doped silica cladding, the bandwidth dependence on wavelength of the proposed fiber is minimized, which indicates that the modal bandwidth performance at the longer wavelength can be effectively improved without compromising modal bandwidth at 850 nm. The error-free 100 Gb/s (4×25.78 Gb/s) multimode transmission over 250 meter-long fiber is achieved using a commercially available VCSEL-based SWDM transceiver. The applicable distance can be extended to 300 meters when a biterror rate just below the forward error correction (FEC) threshold of 5×10  is acceptable. Besides, the 100 Gb/s error-free single-mode transmission over 10 km-long fiber was also demonstrated with a commercially available directly modulatedlaser (DML)-based CWDM transceiver. The results imply that the proposed MMF may be useful for large-scale data center applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.015433