Improving the limits of detection in potentiometric sensors

Potentiometric sensors will generally suffer from unwanted responses as a result to changing temperatures by generating an electromotive force. Typically, this voltage drift has a non-linear character and therefore it is difficult to compensate using linear algorithms implemented in the analogue dom...

Full description

Saved in:
Bibliographic Details
Published inMeasurement science & technology Vol. 26; no. 12; pp. 125104 - 7
Main Authors van der Bent, J F, Puik, E C N, Tong, H D, van Rijn, C J M
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Potentiometric sensors will generally suffer from unwanted responses as a result to changing temperatures by generating an electromotive force. Typically, this voltage drift has a non-linear character and therefore it is difficult to compensate using linear algorithms implemented in the analogue domain. A solution is proposed to improve the sensor characteristics by combining the digitized output of two CO2 rubidium silver iodide sensors with a specially designed digital algorithm to improve the limits of detection (LOD). Experiments show that this method has the capability to improve the LOD of the sensor with a factor 4.5x during temperature variations of 22 °C over a measurement period of 22 h. It enables potentiometric sensors to be used in low power wireless sensor networks for long term air quality control. Furthermore, the influence of depletion of the rubidium silver iodide electrolyte layer can be effectively compensated by determining the decay of the active layer according to the Nernst equation. Knowing the function of depletion over time helps to correct the sensor output and thereby improves the accuracy of the sensor.
Bibliography:MST-102743.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0957-0233
1361-6501
DOI:10.1088/0957-0233/26/12/125104