Non-planar femtosecond enhancement cavity for VUV frequency comb applications

External passive femtosecond enhancement cavities (fsECs) are widely used to increase the efficiency of non-linear conversion processes like high harmonic generation (HHG) at high repetition rates. Their performance is often limited by elliptical beam profiles, caused by oblique incidence on spheric...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 24; no. 5; pp. 5253 - 5262
Main Authors Winkler, Georg, Fellinger, Jakob, Seres, Jozsef, Seres, Enikoe, Schumm, Thorsten
Format Journal Article
LanguageEnglish
Published United States 07.03.2016
Online AccessGet full text

Cover

Loading…
More Information
Summary:External passive femtosecond enhancement cavities (fsECs) are widely used to increase the efficiency of non-linear conversion processes like high harmonic generation (HHG) at high repetition rates. Their performance is often limited by elliptical beam profiles, caused by oblique incidence on spherical focusing mirrors. We introduce a novel three-dimensionally folded variant of the typical planar bow-tie resonator geometry that guarantees circular beam profiles, maintains linear polarization, and allows for a significantly tighter focus as well as a larger beam cross-section on the cavity mirrors. The scheme is applied to improve focusing in a Ti:Sapphire based VUV frequency comb system, targeting the 5th harmonic around 160 nm (7.8 eV) towards high-precision spectroscopy of the low-energy isomer state of Thorium-229. It will also be beneficial in fsEC-applications with even higher seeding and intracavity power where the damage threshold of the mirrors becomes a major concern.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.24.005253