Relaxation Properties of Pressure-sensitive Adhesives upon Withdrawal of Bonding Pressure
Relaxation properties of pressure-sensitive adhesives (PSA) have been studied with the squeeze-recoil tester used in the regime of parallel-plate dilatometer under conditions imitating the removal of compressive force in the course of adhesive bond formation. The relaxation properties of PSAs are co...
Saved in:
Published in | The Journal of adhesion Vol. 81; no. 1; pp. 77 - 107 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
16.02.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Relaxation properties of pressure-sensitive adhesives (PSA) have been studied with the squeeze-recoil tester used in the regime of parallel-plate dilatometer under conditions imitating the removal of compressive force in the course of adhesive bond formation. The relaxation properties of PSAs are compared with their adhesive behavior measured using the 180-Deg Peel Test. Two classes of PSAs are considered: 1) conventional rubbery adhesives based on the mixtures of styrene-isoprene-styrene (SIS) block copolymer with a tackifier resin and a plasticizer, and butyl rubber plasticized with low-molecular-weight polyisobutylene, and 2) hydrophilic PSAs composed of the blends of high-molecular-weight poly(N-vinyl pyrrolidone) (PVP) with oligomeric polyethylene glycol (PEG). By comparing the adhesive and relaxation behaviors of different PSAs, the relaxation criteria for pressure-sensitive adhesion have been stated. Relaxation behavior of the examined PSAs demonstrates two values of retardation time: the shorter retardation time of 10-70 sec and the longer time of 300-660 sec. These times can be associated, respectively, with small- and large-scale mechanisms of strain recovery. By comparing the relaxation and adhesive properties of PVP-PEG blend (which involves the formation of a hydrogen-bonded network through both terminal hydroxyl groups in PEG short chains) with the properties of covalently crosslinked copolymers of vinyl pyrrolidone (VP) with PEG-diacrylate and comb-like VP copolymers with PEG-monomethacrylate, the contributions of covalent crosslinking and H-bonding network have been characterized. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0021-8464 1563-518X 1545-5823 |
DOI: | 10.1080/00218460590904462 |