Performance-enhanced gigabit/s MIMO-OFDM visible light communications using CSI-free/dependent precoding techniques

In this paper, we propose two digital signal processing (DSP) techniques, the orthogonal circulant matrix transform (OCT) technique and the singular value decomposition (SVD)-based adaptive loading, to reduce the bit error rate (BER) of multiple-input-multiple-output orthogonal frequency division mu...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 27; no. 9; pp. 12806 - 12816
Main Authors Hong, Yang, Chen, Lian-Kuan, Zhao, Jian
Format Journal Article
LanguageEnglish
Published United States 29.04.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we propose two digital signal processing (DSP) techniques, the orthogonal circulant matrix transform (OCT) technique and the singular value decomposition (SVD)-based adaptive loading, to reduce the bit error rate (BER) of multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM)-based visible light communication (VLC) systems, without and with using the channel state information (CSI), respectively. A gigabit/s 2 × 2 MIMO-OFDM VLC system under ~100-MHz system bandwidth, with both symmetrical and asymmetrical MIMO setups, is demonstrated. It is shown that both techniques can attain outstanding BER reduction regardless of the transceivers' geometrical distributions. The SVD-based adaptive loading exhibits the best performance but requires the CSI. The OCT technique can achieve suboptimal performance without the needs of CSI. In both the 1.6-Gbit/s symmetrical MIMO setup and the 1.2-Gbit/s asymmetrical setup, we achieved more than one and two orders of magnitude reductions in the BER by using the OCT technique and the SVD-based adaptive loading, respectively.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.012806