Reversibly tunable plasmonic bandgap by responsive hydrogel grating
Reversible actuating of surface plasmon propagation by responsive hydrogel grating is reported. Thermo-responsive poly(N-isopropylacrylamide)-based (pNIPAAm) hydrogel nanostructure was designed and tethered to a gold surface in order to switch on and off Bragg scattering of surface plasmons which is...
Saved in:
Published in | Optics express Vol. 24; no. 3; pp. 2457 - 2465 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
08.02.2016
|
Online Access | Get full text |
Cover
Loading…
Summary: | Reversible actuating of surface plasmon propagation by responsive hydrogel grating is reported. Thermo-responsive poly(N-isopropylacrylamide)-based (pNIPAAm) hydrogel nanostructure was designed and tethered to a gold surface in order to switch on and off Bragg scattering of surface plasmons which is associated with an occurrence of a bandgap in their dispersion relation. pNIPAAm-based grating with a period around 280 nm was prepared by using photo-crosslinkable terpolymer and laser interference lithography and it was brought in contact with water. The temperature induced swelling and collapse of pNIPAAm hydrogel grating strongly modulates its refractive index (Δn~0.1) which leads to the reversible opening and closing of a plasmonic bandgap. The experiments demonstrate partial opening of a bandgap with the width of 12 nm at wavelength around 800 nm where SPR exhibited the spectral width of about 75 nm. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.24.002457 |