City-level pathways to carbon peak and neutrality in China

Chinese cities need independent but synergetic dual-carbon abatement roadmaps to mitigate climate change and achieve carbon neutrality. Using source-level data, we develop a time-series, full-scale emission inventory for all Chinese cities from 2005 to 2020, exploring associated heterogeneous and ho...

Full description

Saved in:
Bibliographic Details
Published inCell reports sustainability Vol. 1; no. 5; p. 100102
Main Authors Zhang, Li, Ruan, Jianhui, Zhang, Zhe, Qin, Ziyu, Lei, Zhongyi, Cai, Bofeng, Wang, Shouyang, Tang, Ling
Format Journal Article
LanguageEnglish
Published Elsevier 24.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Chinese cities need independent but synergetic dual-carbon abatement roadmaps to mitigate climate change and achieve carbon neutrality. Using source-level data, we develop a time-series, full-scale emission inventory for all Chinese cities from 2005 to 2020, exploring associated heterogeneous and homogeneous patterns. We find that 31% of cities have had a significant carbon emission peak, with the main driver being carbon intensity reductions through efficiency gains and structural improvements. Despite discrepant emission levels and socioeconomic determinants, a uniform trajectory in emission changes exists across cities via four emission phases: growth of 8%–9% annually (95% confidence interval) before peaking; plateau and decline by 9%–13% for 5–7 years; and plain with slower declines. We project that if cities follow their early-peaked counterparts’ mitigation pathways, China will reach a carbon peak in 2026 at 13 Gt and carbon neutrality during 2051–2058, revealing the feasibility of Chinese climate goals and the importance of long-reaching, city-targeted planning. Science for society: China established its dual-carbon goals to achieve a carbon peak before 2030 and carbon neutrality by 2060. It is important for cities to identify their distinctive patterns and define individual dual-carbon roadmaps to achieve carbon neutrality in China. In this study, we conduct a carbon inventory for all Chinese cities from 2005 to 2020 to quantitatively define the emission phases in the process of carbon peak. We find that 31% of cities have had a significant carbon emission peak, with the main driver being carbon intensity reductions. A uniform trajectory in emission changes exists across cities, despite significant differences in emission levels and socioeconomic determinants. We project that if cities follow their early-peaked counterparts’ mitigation pathways, China could achieve its climate change goals ahead of the policy deadlines.
ISSN:2949-7906
2949-7906
DOI:10.1016/j.crsus.2024.100102