High-Sampling Rate Dynamic Inversion-Filter Realization and Applications in Digital Control

This paper presents a stable inversion of nonminimum phase systems with highly efficient computation for high-sampling rate applications. The stable filter that inverts the dynamics of a nonminimum system is based on cascading a stable pole-zero cancellation infinite impulse response (IIR) filter wi...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 19; no. 1; pp. 238 - 248
Main Authors Chang, Herrick L., Tsu-Chin Tsao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a stable inversion of nonminimum phase systems with highly efficient computation for high-sampling rate applications. The stable filter that inverts the dynamics of a nonminimum system is based on cascading a stable pole-zero cancellation infinite impulse response (IIR) filter with a high-order finite impulse response (FIR) filter which inverts the unstable zero dynamics. The high-order FIR filter is realized based on efficient IIR filter implementation first introduced by Powell and Chau then later modified by Kurosu. As a demonstrative example, the inversion filters are applied to feedforward tracking and repetitive control algorithms and realized by a field programmable gate array. The controllers are implemented at 100-kHz sampling rate to control the motion of a 4 degrees-of-freedom magnetically levitated shaft in experiment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2012.2230184