Receding-Horizon Adaptive Control of Laser Beam Jitter

This paper uses a new method for receding-horizon adaptive control to reduce laser beam jitter. The control scheme generates a control command derived from a receding-horizon performance index that involves predicted future values of an output disturbance. A recursive least-squares adaptive lattice...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 21; no. 1; pp. 227 - 237
Main Authors Tsuchiya, Nolan, Gibson, Steve, Tsu-Chin Tsao, Verhaegen, Michel
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper uses a new method for receding-horizon adaptive control to reduce laser beam jitter. The control scheme generates a control command derived from a receding-horizon performance index that involves predicted future values of an output disturbance. A recursive least-squares adaptive lattice filter performs the required prediction based on real-time measurements. In a laser beam steering experiment, the adaptive controller drives a micro mirror to cancel broadband disturbance and maintain the laser spot on an optical position sensor. Experimental results demonstrate the capability of the receding-horizon adaptive controller to incorporate frequency weighting to reduce sensitivity to plant modeling error at high frequencies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2015.2427379