Evaluating hyperspectral imaging of wetland vegetation as a tool for detecting estuarine nutrient enrichment

Nutrient enrichment and eutrophication are major concerns in many estuarine and wetland ecosystems, and the need is urgent for fast, efficient, and synoptic ways to detect and monitor nutrients in wetlands and other coastal systems across multiple spatial and temporal scales. We integrated three app...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 112; no. 11; pp. 4020 - 4033
Main Authors Siciliano, Daria, Wasson, Kerstin, Potts, Donald C., Olsen, R.C.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.11.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nutrient enrichment and eutrophication are major concerns in many estuarine and wetland ecosystems, and the need is urgent for fast, efficient, and synoptic ways to detect and monitor nutrients in wetlands and other coastal systems across multiple spatial and temporal scales. We integrated three approaches in a multi-disciplinary evaluation of the potential for using hyperspectral imaging as a tool to assess nutrient enrichment and vegetation responses in tidal wetlands. For hyperspectral imaging to be an effective tool, spectral signatures must vary in ways correlated with water nutrient content either directly, or indirectly via such proxies as vegetation responses to elevated nitrogen. Working in Elkhorn Slough, central California, where intensive farming practices generate considerable runoff of fertilizers and pesticides, we looked first for long- and short-term trends among temporally ephemeral point data for nutrients and other water quality characters collected monthly at 18 water sampling stations since 1988. Second, we assessed responses of the dominant wetland plant, Salicornia virginica (common pickleweed) to two fertilizer regimes in 0.25 m 2 experimental plots, and measured changes in tissue composition (C, H, N), biomass, and spectral responses at leaf and at canopy scales . Third, we used HyMap hyperspectral imagery (126 bands; 15–19 nm spectral resolution; 2.5 m spatial resolution) for a synoptic assessment of the entire wetland ecosystem of Elkhorn Slough. We mapped monospecific Salicornia patches (∼ 56–500 m 2) on the ground adjacent to the 18 regular water sampling sites, and then located these patches in the hyperspectral imagery to correlate long-term responses of larger patches to water nutrient regimes. These were used as standards for correlating plant canopy spectral responses with nitrogen variation described by the water sampling program. There were consistent positive relationships between nitrogen levels and plant responses in both the field experiment and the landscape analyses. Two spectral indices, the Photochemical Reflectance Index (PRI) and Derivative Chlorophyll Index (DCI), were correlated significantly with water nutrients. We conclude that hyperspectral imagery can be used to detect nutrient enrichment across three spatial and at least two temporal scales, and suggest that more quantitative information could be extracted with further research and a greater understanding of physiological and physical mechanisms linking water chemistry, plant properties and spectral imaging characteristics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0034-4257
1879-0704
DOI:10.1016/j.rse.2008.05.019