Mixed self-assembled lipopolymers with spacer lipids enhancing sensitivity of lipid-derivative QCMs for odor sensors
An odor sensing system using a quartz crystal microbalance (QCM) sensor array and pattern recognition technique has been for years a main research topic in our group. For the general field of artificial olfaction using acoustic-wave based sensors such as QCMs it is vital to search for novel sensing...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 134; no. 1; pp. 72 - 78 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
28.08.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An odor sensing system using a quartz crystal microbalance (QCM) sensor array and pattern recognition technique has been for years a main research topic in our group. For the general field of artificial olfaction using acoustic-wave based sensors such as QCMs it is vital to search for novel sensing materials. Here we present recent results of our ongoing study on application of pegylated lipids as coatings for QCM odor-sensors. The method presented herein is based on self-assembling of lipids and lipid-derivatives on the QCM surfaces. The disulphide-terminated lipids and lipopolymers are co-chemisorbed onto gold electrodes of QCM sensors by simple immersion in ethanolic solutions. This creates porous supports onto which additional layers of lipopolymers are physisorbed. The method allows for fabrication of lipopolymeric QCM odor-sensors with enhanced sensitivity to odorants, capable of very good discrimination among odorant samples—according to the functional group of an odorant. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0925-4005 1873-3077 |
DOI: | 10.1016/j.snb.2008.04.015 |