Neural Network-Based Finite-Time Command Filtering Control for Switched Nonlinear Systems With Backlash-Like Hysteresis
This brief is concerned with the finite-time tracking control problem for switched nonlinear systems with arbitrary switching and hysteresis input. The neural networks are utilized to cope with the unknown nonlinear functions. To present the finite-time adaptive neural control strategy, a new criter...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 32; no. 7; pp. 3268 - 3273 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This brief is concerned with the finite-time tracking control problem for switched nonlinear systems with arbitrary switching and hysteresis input. The neural networks are utilized to cope with the unknown nonlinear functions. To present the finite-time adaptive neural control strategy, a new criterion of practical finite-time stability is first developed. Compared with the traditional command filter technique, the main advantage is that the improved error compensation signals are designed to remove the filtered error and the Levant differentiators are introduced to approximate the derivative of the virtual control signal. The finite-time adaptive neural controller is proposed via the new command filter backstepping technique, and the tracking error converges to a small neighborhood of the origin in finite time. Finally, the simulation results are provided to testify the validity of the proposed method. |
---|---|
AbstractList | This brief is concerned with the finite-time tracking control problem for switched nonlinear systems with arbitrary switching and hysteresis input. The neural networks are utilized to cope with the unknown nonlinear functions. To present the finite-time adaptive neural control strategy, a new criterion of practical finite-time stability is first developed. Compared with the traditional command filter technique, the main advantage is that the improved error compensation signals are designed to remove the filtered error and the Levant differentiators are introduced to approximate the derivative of the virtual control signal. The finite-time adaptive neural controller is proposed via the new command filter backstepping technique, and the tracking error converges to a small neighborhood of the origin in finite time. Finally, the simulation results are provided to testify the validity of the proposed method. This brief is concerned with the finite-time tracking control problem for switched nonlinear systems with arbitrary switching and hysteresis input. The neural networks are utilized to cope with the unknown nonlinear functions. To present the finite-time adaptive neural control strategy, a new criterion of practical finite-time stability is first developed. Compared with the traditional command filter technique, the main advantage is that the improved error compensation signals are designed to remove the filtered error and the Levant differentiators are introduced to approximate the derivative of the virtual control signal. The finite-time adaptive neural controller is proposed via the new command filter backstepping technique, and the tracking error converges to a small neighborhood of the origin in finite time. Finally, the simulation results are provided to testify the validity of the proposed method.This brief is concerned with the finite-time tracking control problem for switched nonlinear systems with arbitrary switching and hysteresis input. The neural networks are utilized to cope with the unknown nonlinear functions. To present the finite-time adaptive neural control strategy, a new criterion of practical finite-time stability is first developed. Compared with the traditional command filter technique, the main advantage is that the improved error compensation signals are designed to remove the filtered error and the Levant differentiators are introduced to approximate the derivative of the virtual control signal. The finite-time adaptive neural controller is proposed via the new command filter backstepping technique, and the tracking error converges to a small neighborhood of the origin in finite time. Finally, the simulation results are provided to testify the validity of the proposed method. |
Author | Lin, Chong Fu, Cheng Wang, Qing-Guo Yu, Jinpeng |
Author_xml | – sequence: 1 givenname: Cheng orcidid: 0000-0002-0122-452X surname: Fu fullname: Fu, Cheng email: fucheng1027@126.com organization: School of Automation, Qingdao University, Qingdao, China – sequence: 2 givenname: Qing-Guo orcidid: 0000-0002-3672-3716 surname: Wang fullname: Wang, Qing-Guo email: wangq@uj.ac.za organization: Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa – sequence: 3 givenname: Jinpeng orcidid: 0000-0002-5432-1702 surname: Yu fullname: Yu, Jinpeng email: yjp1109@hotmail.com organization: School of Automation, Qingdao University, Qingdao, China – sequence: 4 givenname: Chong orcidid: 0000-0002-7888-303X surname: Lin fullname: Lin, Chong email: linchong_2004@hotmail.com organization: School of Automation, Qingdao University, Qingdao, China |
BookMark | eNp9kbtuGzEQRYnAQfyIfyBuFkiTZhU-d8nSFvwChE1hBUlHcOlRRItLOiQFQX-fXctw4SLTzODOPQOC9xQdhRgAoS8EzwjB6vuy6xYPM4opnjGMlWzJB3RCSUNryqQ8epvb38foPOcnPFaDRcPVJ3TMaMuE4PgE7TrYJuOrDsoupk19ZTI8VjcuuAL10g1QzeMwmDBpvkBy4c-ohJKir1YxVQ87V-x6RLoYvAtgRmmfCwy5-uXKuroyduNNXtcLt4HqblolyC5_Rh9Xxmc4f-1n6OfN9XJ-Vy9-3N7PLxe1ZVSWWklsrQXZMMUltfax570hTKx43yirerCEEmw5AOO94qbpueCNkFgxImxr2Bn6drj7nOLfLeSiB5cteG8CxG3WlFPVStxINVq_vrM-xW0K4-s0FVwqhVmLR5c8uGyKOSdYaeuKKW76E-O8JlhP-eiXfPSUj37NZ0TpO_Q5ucGk_f-hiwPkAOANUEQwJRj7Bwn4nGc |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_cja_2024_07_041 crossref_primary_10_1109_TTE_2023_3320770 crossref_primary_10_1155_2020_2793580 crossref_primary_10_1109_TCYB_2021_3057127 crossref_primary_10_1016_j_ins_2022_04_048 crossref_primary_10_3390_s22228763 crossref_primary_10_1016_j_conengprac_2023_105559 crossref_primary_10_1016_j_jfranklin_2021_04_036 crossref_primary_10_1109_TFUZZ_2024_3392632 crossref_primary_10_1109_TNNLS_2022_3149894 crossref_primary_10_1016_j_amc_2022_126953 crossref_primary_10_3390_electronics12132771 crossref_primary_10_1109_TNNLS_2021_3104846 crossref_primary_10_3390_math11010031 crossref_primary_10_1016_j_ymssp_2023_110562 crossref_primary_10_1109_TFUZZ_2022_3228012 crossref_primary_10_1007_s40815_022_01405_w crossref_primary_10_1109_TASE_2024_3443457 crossref_primary_10_1016_j_isatra_2023_03_007 crossref_primary_10_3390_fractalfract8060339 crossref_primary_10_1080_00207721_2023_2210148 crossref_primary_10_1109_TCYB_2021_3132587 crossref_primary_10_1016_j_jfranklin_2022_08_036 crossref_primary_10_1016_j_engappai_2025_110474 crossref_primary_10_1002_rnc_7799 crossref_primary_10_1016_j_isatra_2023_11_037 crossref_primary_10_3390_math12071070 crossref_primary_10_1109_TSMC_2021_3125772 crossref_primary_10_1109_TFUZZ_2023_3237337 crossref_primary_10_1007_s40435_023_01255_w crossref_primary_10_1177_01423312211047116 crossref_primary_10_1007_s12555_022_0941_7 crossref_primary_10_1049_cth2_12517 crossref_primary_10_1016_j_jfranklin_2021_12_004 crossref_primary_10_1109_TNNLS_2022_3203074 crossref_primary_10_1177_01423312221110437 crossref_primary_10_1016_j_mejo_2021_105053 crossref_primary_10_1109_JAS_2023_123831 crossref_primary_10_1016_j_isatra_2022_04_050 crossref_primary_10_1109_TIE_2021_3070494 crossref_primary_10_1007_s00521_023_08418_y crossref_primary_10_1016_j_isatra_2022_10_048 crossref_primary_10_1109_ACCESS_2025_3538260 crossref_primary_10_1016_j_isatra_2022_08_023 crossref_primary_10_1109_TFUZZ_2023_3331742 crossref_primary_10_1109_TNNLS_2021_3072552 crossref_primary_10_1007_s12555_021_0197_7 crossref_primary_10_1016_j_ejcon_2023_100799 crossref_primary_10_1109_TASE_2023_3263535 crossref_primary_10_1109_TMECH_2023_3250481 crossref_primary_10_1109_TSMC_2022_3211332 crossref_primary_10_1007_s11071_022_07472_w crossref_primary_10_1016_j_actaastro_2022_10_002 crossref_primary_10_1007_s12555_021_0043_y crossref_primary_10_1109_TFUZZ_2023_3259381 crossref_primary_10_1002_rnc_7517 crossref_primary_10_1002_acs_3681 crossref_primary_10_1007_s12190_024_02042_2 crossref_primary_10_1016_j_sigpro_2021_108305 crossref_primary_10_3934_math_2024048 crossref_primary_10_1002_rnc_7765 crossref_primary_10_1002_rnc_7247 crossref_primary_10_1007_s40815_023_01617_8 crossref_primary_10_1016_j_isatra_2023_02_024 crossref_primary_10_1002_asjc_3367 crossref_primary_10_1016_j_isatra_2023_12_034 crossref_primary_10_1109_TIE_2023_3269478 crossref_primary_10_1016_j_isatra_2023_10_002 crossref_primary_10_1080_0954898X_2023_2296115 crossref_primary_10_1016_j_ins_2021_04_097 crossref_primary_10_1016_j_neucom_2020_10_085 crossref_primary_10_1080_00207721_2023_2180783 crossref_primary_10_1088_2631_8695_ad63f6 crossref_primary_10_1016_j_isatra_2022_09_003 crossref_primary_10_1016_j_ins_2022_08_092 crossref_primary_10_1002_asjc_3111 crossref_primary_10_1080_03772063_2024_2394597 crossref_primary_10_1016_j_jfranklin_2022_10_042 crossref_primary_10_1109_TPEL_2022_3211412 crossref_primary_10_1016_j_jfranklin_2021_01_036 crossref_primary_10_1016_j_neucom_2022_09_034 crossref_primary_10_1109_ACCESS_2021_3069152 crossref_primary_10_1007_s40815_022_01314_y crossref_primary_10_1080_03081079_2024_2364623 crossref_primary_10_1109_TCSI_2023_3342070 crossref_primary_10_1177_10775463221105698 crossref_primary_10_1016_j_ins_2021_02_050 crossref_primary_10_1002_rnc_6573 crossref_primary_10_1007_s12555_021_0433_1 crossref_primary_10_1016_j_neucom_2021_06_007 crossref_primary_10_1109_TCYB_2020_3032530 crossref_primary_10_1016_j_jfranklin_2022_10_057 crossref_primary_10_1109_TCYB_2022_3223894 crossref_primary_10_1007_s12555_021_0558_2 crossref_primary_10_1109_TCSII_2021_3109257 crossref_primary_10_1109_TNNLS_2022_3176625 crossref_primary_10_3390_photonics11020156 crossref_primary_10_1109_TFUZZ_2022_3174907 crossref_primary_10_1109_TSMC_2023_3296442 crossref_primary_10_1109_TCYB_2021_3108237 crossref_primary_10_1109_TII_2023_3300415 |
Cites_doi | 10.1002/rnc.1624 10.1016/j.automatica.2010.06.050 10.1109/TNN.2004.824411 10.1109/TSMC.2017.2678760 10.1109/TAC.2009.2015562 10.1109/72.870049 10.1016/j.automatica.2018.03.033 10.1002/acs.2980 10.1137/S0363012997321358 10.1109/TCST.2011.2121907 10.1109/TFUZZ.2016.2574913 10.1109/TNN.2004.839354 10.1080/0020717031000099029 10.1016/j.automatica.2013.09.001 10.1109/TNN.2010.2042611 10.1109/TFUZZ.2017.2717804 10.1016/S1474-6670(17)50717-X 10.1109/9.895588 10.1109/TSMCB.2008.2006368 10.1109/TSMC.2019.2911115 10.1016/j.automatica.2005.07.001 10.1080/00207721003770569 10.1016/j.jfranklin.2016.12.029 10.1109/TSMC.2017.2696710 10.1016/j.sysconle.2004.09.006 10.1109/9.935058 10.1109/TNNLS.2014.2305717 10.1109/TSMC.2017.2675540 10.1049/iet-cta.2015.0635 10.1109/TSMC.2016.2557222 10.1016/j.automatica.2014.11.019 10.1109/TCYB.2016.2633367 10.1109/TSMC.2016.2606159 10.1016/j.automatica.2004.11.036 10.1109/TAC.2004.835398 10.1109/TNNLS.2014.2360933 10.1109/TNNLS.2019.2915376 10.1016/j.cnsns.2009.09.004 10.1109/TFUZZ.2016.2634162 10.1016/j.sysconle.2013.07.003 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2020.3009871 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 3273 |
ExternalDocumentID | 10_1109_TNNLS_2020_3009871 9153953 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and the Development Plan grantid: 2017YFB1303503 – fundername: Oppenheimer Memorial Trust grant – fundername: National Natural Science Foundation of China grantid: 61973179; 61673227 funderid: 10.13039/501100001809 – fundername: National Research Foundation of South Africa grantid: 113340; 120106 – fundername: Taishan Scholar Special Project Fund grantid: TSQN20161026 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c328t-980ccce8639482ccdb4ba135f4b69c9bec1210c4ee34b94a6b45465809315c7a3 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Thu Jul 10 22:16:45 EDT 2025 Sun Jun 29 14:17:35 EDT 2025 Tue Jul 01 00:27:34 EDT 2025 Thu Apr 24 23:02:14 EDT 2025 Wed Aug 27 02:26:39 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-980ccce8639482ccdb4ba135f4b69c9bec1210c4ee34b94a6b45465809315c7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5432-1702 0000-0002-7888-303X 0000-0002-0122-452X 0000-0002-3672-3716 |
PMID | 32735540 |
PQID | 2548990370 |
PQPubID | 85436 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2429780689 crossref_primary_10_1109_TNNLS_2020_3009871 crossref_citationtrail_10_1109_TNNLS_2020_3009871 proquest_journals_2548990370 ieee_primary_9153953 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ren (ref29) 2009; 39 ref32 ref10 ref1 ref39 ref17 ref38 ref16 ref19 ref18 krstic (ref2) 1995 ref24 ref23 liu (ref5) 2014; 25 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref40 |
References_xml | – ident: ref41 doi: 10.1002/rnc.1624 – ident: ref3 doi: 10.1016/j.automatica.2010.06.050 – ident: ref37 doi: 10.1109/TNN.2004.824411 – ident: ref10 doi: 10.1109/TSMC.2017.2678760 – ident: ref15 doi: 10.1109/TAC.2009.2015562 – ident: ref36 doi: 10.1109/72.870049 – ident: ref28 doi: 10.1016/j.automatica.2018.03.033 – ident: ref7 doi: 10.1002/acs.2980 – ident: ref21 doi: 10.1137/S0363012997321358 – ident: ref16 doi: 10.1109/TCST.2011.2121907 – ident: ref20 doi: 10.1109/TFUZZ.2016.2574913 – ident: ref39 doi: 10.1109/TNN.2004.839354 – ident: ref35 doi: 10.1080/0020717031000099029 – year: 1995 ident: ref2 publication-title: Nonlinear and Adaptive Control Design – ident: ref23 doi: 10.1016/j.automatica.2013.09.001 – ident: ref40 doi: 10.1109/TNN.2010.2042611 – ident: ref11 doi: 10.1109/TFUZZ.2017.2717804 – ident: ref30 doi: 10.1016/S1474-6670(17)50717-X – ident: ref33 doi: 10.1109/9.895588 – volume: 39 start-page: 431 year: 2009 ident: ref29 article-title: Adaptive neural control for a class of uncertain nonlinear systems in pure-feedback form with hysteresis input publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2008.2006368 – ident: ref19 doi: 10.1109/TSMC.2019.2911115 – ident: ref22 doi: 10.1016/j.automatica.2005.07.001 – ident: ref26 doi: 10.1080/00207721003770569 – ident: ref34 doi: 10.1016/j.jfranklin.2016.12.029 – ident: ref13 doi: 10.1109/TSMC.2017.2696710 – ident: ref1 doi: 10.1016/j.sysconle.2004.09.006 – ident: ref24 doi: 10.1109/9.935058 – volume: 25 start-page: 2129 year: 2014 ident: ref5 article-title: Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2014.2305717 – ident: ref14 doi: 10.1109/TSMC.2017.2675540 – ident: ref27 doi: 10.1049/iet-cta.2015.0635 – ident: ref9 doi: 10.1109/TSMC.2016.2557222 – ident: ref12 doi: 10.1016/j.automatica.2014.11.019 – ident: ref17 doi: 10.1109/TCYB.2016.2633367 – ident: ref8 doi: 10.1109/TSMC.2016.2606159 – ident: ref25 doi: 10.1016/j.automatica.2004.11.036 – ident: ref31 doi: 10.1109/TAC.2004.835398 – ident: ref6 doi: 10.1109/TNNLS.2014.2360933 – ident: ref38 doi: 10.1109/TNNLS.2019.2915376 – ident: ref32 doi: 10.1016/j.cnsns.2009.09.004 – ident: ref18 doi: 10.1109/TFUZZ.2016.2634162 – ident: ref4 doi: 10.1016/j.sysconle.2013.07.003 |
SSID | ssj0000605649 |
Score | 2.6379101 |
Snippet | This brief is concerned with the finite-time tracking control problem for switched nonlinear systems with arbitrary switching and hysteresis input. The neural... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3268 |
SubjectTerms | Adaptive control Adaptive neural control arbitrary switching backlash-like hysteresis Backstepping command filtering Control stability Error compensation finite-time Hysteresis Neural networks Nonlinear control Nonlinear systems Stability analysis Switched systems Switches Tracking control Tracking errors |
Title | Neural Network-Based Finite-Time Command Filtering Control for Switched Nonlinear Systems With Backlash-Like Hysteresis |
URI | https://ieeexplore.ieee.org/document/9153953 https://www.proquest.com/docview/2548990370 https://www.proquest.com/docview/2429780689 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLe2PfHCBgNxMFCQeIPc0iZtk0c2cTqhrS_bxL1VSZrTqpt6iPU0aX89dvohBAjx1Cpxq1a2Yzuxfwb4UOd18Cr1vNa24LTgcS2l5Vqtw3ptrZA11Q5flvnyRn1dZas9-DTVwoQQYvJZmNNtPMuvt35HW2WnBtXTZHIf9jFw62u1pv0UgX55Hr3dNMlTnspiNdbICHN6XZYXVxgNphikEoRmQR1iJJruLG57_GKSYo-VPxbmaG0Wh3A5fmefZLKZ7zo394-_QTj-748cwdPB7WSfezl5BnuhfQ6HY0sHNmj4MTwQWAcSln12OD9DI1ezRUOeKadyEUYVJbalMTpnR8PHzvtsd4buL7t6aEgMalb2EBwWh3pMdPat6W7ZmfUb9Ndv-UWzCWxJUxjvN_cv4Gbx5fp8yYfeDNzLVHfcaOG9DxodHKVT72unnE1ktlYuN96gZBAymVchSOWMsrlT1HZdCyOTzBdWvoSDdtuGV8DyxGOUZp0KVFhljJV4cdpYkYSilm4Gycieyg_A5dQ_466KAYwwVeRuRdytBu7O4OP0zPcetuOf1MfEo4lyYM8MTkYpqAbNvq8woMYQVchCzOD9NI06SQcttg3bHdKgzBda5Nq8_vub38CTlHJjYtrvCRx0P3bhLTo3nXsXpfoncd_0sg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfGeIAXBgy0wgAj8QbuHNtJ7Ec2URVo87JO9C2yHVeLilLEUk3ir-fO-RAChHhKZF-iRHfn-519H4S8qbIqeCU8q7TNGS54TEtpmVabsNlYy2WFucPLIptfqU_rdH1A3o25MCGEGHwWpngbz_Krnd_jVtmZAfU0qbxD7oLdT0WXrTXuqHBA5lnEuyLJBBMyXw9ZMtycrYpicQn-oAA3FYto5tgjRoLxTuPGxy9GKXZZ-WNpjvZmdkSWw5d2YSbb6b51U__jtyKO__srD8mDHnjS952kPCIHoXlMjoamDrTX8WNyi-U6gLDo4sPZOZi5is5qxKYME0Yo5pTYBsfwpB1MH73o4t0pAGB6eVujIFS06IpwWBjqqqLTL3V7Tc-t3wJiv2aLehvoHKfA469vnpCr2YfVxZz13RmYl0K3zGjuvQ8aII7SwvvKKWcTmW6Uy4w3IBtYm8yrEKRyRtnMKWy8rrmRSepzK5-Sw2bXhBNCs8SDn2adCphaZYyVcHHaWJ6EvJJuQpKBPaXvS5djB42vZXRhuCkjd0vkbtlzd0Lejs986wp3_JP6GHk0UvbsmZDTQQrKXrdvSnCpwUnlMucT8nqcBq3EoxbbhN0eaEDqc80zbZ79_c2vyL35arkoFx-Lz8_JfYGRMjEI-JQctt_34QVAnda9jBL-E15F9_w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network-Based+Finite-Time+Command+Filtering+Control+for+Switched+Nonlinear+Systems+With+Backlash-Like+Hysteresis&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Fu%2C+Cheng&rft.au=Wang%2C+Qing-Guo&rft.au=Yu%2C+Jinpeng&rft.au=Lin%2C+Chong&rft.date=2021-07-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=32&rft.issue=7&rft.spage=3268&rft_id=info:doi/10.1109%2FTNNLS.2020.3009871&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |