Neural Network-Based Finite-Time Command Filtering Control for Switched Nonlinear Systems With Backlash-Like Hysteresis
This brief is concerned with the finite-time tracking control problem for switched nonlinear systems with arbitrary switching and hysteresis input. The neural networks are utilized to cope with the unknown nonlinear functions. To present the finite-time adaptive neural control strategy, a new criter...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 32; no. 7; pp. 3268 - 3273 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This brief is concerned with the finite-time tracking control problem for switched nonlinear systems with arbitrary switching and hysteresis input. The neural networks are utilized to cope with the unknown nonlinear functions. To present the finite-time adaptive neural control strategy, a new criterion of practical finite-time stability is first developed. Compared with the traditional command filter technique, the main advantage is that the improved error compensation signals are designed to remove the filtered error and the Levant differentiators are introduced to approximate the derivative of the virtual control signal. The finite-time adaptive neural controller is proposed via the new command filter backstepping technique, and the tracking error converges to a small neighborhood of the origin in finite time. Finally, the simulation results are provided to testify the validity of the proposed method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2020.3009871 |