An 8.0-Gb/s HyperTransport Transceiver for 32-nm SOI-CMOS Server Processors
We present an 8.0-Gb/s HyperTransport source-synchronous I/O integrated in a 32-nm SOI-CMOS processor for high-performance servers. Based on a 45-nm design capping at 6.4 Gb/s, the 32-nm transceiver achieves up to 8.0 Gb/s over long-reach board channels by incorporating several jitter- and power-red...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 47; no. 11; pp. 2627 - 2642 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
New York, NY
IEEE
01.11.2012
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present an 8.0-Gb/s HyperTransport source-synchronous I/O integrated in a 32-nm SOI-CMOS processor for high-performance servers. Based on a 45-nm design capping at 6.4 Gb/s, the 32-nm transceiver achieves up to 8.0 Gb/s over long-reach board channels by incorporating several jitter- and power-reduction enhancements. First, a high-bandwidth digital clean-up PLL is introduced to attenuate high-frequency jitter in the received forwarded clock before the data is sampled. This PLL achieves a highly programmable jitter bandwidth of 20-296 MHz (measured with 0.2 UI pp input jitter) and 0.90-1.50 ps output rms jitter by implementing an extended bang-bang phase detector for additional phase-error magnitude information and flexible bang-bang control of a current-starved ring-based oscillator. Second, several power-hungry circuits, namely the transmitter input FIFO and output driver as well as the receiver deserializer, are redesigned for 8.0-Gb/s operation to maintain thermal compatibility with the existing 45-nm socket package. The fabricated 20-lane I/O consumes 1.70 W at 8.0 Gb/s with an energy efficiency of 11.8 pJ/bit. This reflects a 4.9% increase in HyperTransport power consumption and only 0.3% increase in total processor target power relative to 45-nm operation at 6.4 Gb/s. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2012.2211697 |